Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (02): 65-72.doi: 10.12052/gdutxb.230022
• Computer Science and Technology • Previous Articles Next Articles
Xiong Rong-sheng, Wang Bang-hai, Yang Xia-ning
CLC Number:
[1] 李佳星, 赵勇先, 王京华. 基于深度学习的单幅图像超分辨率重建算法综述[J]. 自动化学报, 2021, 47(10) : 2341-2363. LI J Q, ZHAO Y X, WANG J H. A review of single image super-resolution reconstruction algorithms based on deep learning[J]. Journal of Automation, 2021, 47(10) : 341-2363. [2] 李现国, 冯欣欣, 李建雄. 多尺度残差网络的单幅图像超分辨率重建[J]. 计算机工程与应用, 2021, 57(7): 215-221. LI X G, FENG X X, LI J X. Multi-scale residual networks for single image super-resolution reconstruction [J]. Computer Engineering and Applications, 2021, 57(7): 215-221. [3] 卢峰, 周琳, 蔡小辉. 面向安防监控场景的低分辨率人脸识别算法研究[J]. 计算机应用研究, 2021, 38(4): 1230-1234. LU F, ZHOU L, CAI X H. Research on low-resolution face recognition algorithm for security surveillance scenarios [J]. Computer Application Research, 2021, 38(4): 1230-1234. [4] 谢海平, 谢凯利, 杨海涛. 图像超分辨率方法研究进展[J]. 计算机工程与应用, 2020, 56(19): 34-41. XIE H P, XIE K L, YANG H T. Research progress of image super-resolution methods [J]. Computer Engineering and Applications, 2020, 56(19): 34-41. [5] 李强, 汪西原, 何佳玮. 基于生成对抗网络的遥感图像超分辨率重建改进算法[J]. 激光与光电子学进展, 2023, 37(5): 1-14. LI Q, WANG X Y, HE J W. An improved algorithm for super-resolution reconstruction of remote sensing images based on generative adversarial networks [J]. Advances in Laser and Optoelectronics, 2023, 37(5): 1-14. [6] 肖春蕾. 基于直方图均衡插值的盆底超声图像细节增强方法[J]. 自动化与仪器仪表, 2022(6): 261-264. XIAO C L. A histogram balanced interpolation-based detail enhancement method for pelvic floor ultrasound images [J]. Automation and Instrumentation, 2022(6): 261-264. [7] 刘嘉敏, 郑超, 张丽梅, 等. 基于图像重构特征融合的高光谱图像分类方法[J]. 中国激光, 2021, 48(9): 203-212. LLU J M, ZHENG C, ZHANG L M, et al. Hyperspectral image classification method based on image reconstruction feature fusion [J]. China Laser, 2021, 48(9): 203-212. [8] WANG Z, CHEN J, HOU S. Deep learning for image super-resolution: a survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3365-3387. [9] 柳聪, 屈丹, 司念文, 等. 基于深度可分离卷积的轻量级图像超分辨率重建[J]. 计算机工程, 2022, 48(6): 228-234. LIU C, QU D, SI N W, et al. Lightweight image super-resolution reconstruction based on depth-separable convolution [J]. Computer Engineering, 2022, 48(6): 228-234. [10] 胡长胜, 詹曙, 吴从中. 基于深度特征学习的图像超分辨率重建[J]. 自动化学报, 2017, 43(5): 814-821. HU C S, ZHAN S, WU C Z. Deep feature learning based image super-resolution reconstruction [J]. Journal of Automation, 2017, 43(5): 814-821. [11] 吴靖, 叶晓晶, 黄峰, 等. 基于深度学习的单帧图像超分辨率重建综述[J]. 电子学报, 2022, 50(9): 2265-2294. WU J, YE X J, HUANG F, et al. A review of single frame image super-resolution reconstruction based on deep learning [J]. Journal of Electronics, 2022, 50(9): 2265-2294. [12] 李轩, 刘立柱. 多分支残差特征蒸馏网络的图像超分辨重建[J]. 小型微型计算机系统, 2023, 48(3): 1-9. LI X, LIU L Z. Multi-branch residual feature distillation network for image super-resolution reconstruction [J]. Small Microcomputer Systems, 2023, 48(3): 1-9. [13] CHAO D, CHEN C L, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//ECCV Springer International Publishing. Istanbul: Springer Cham, 2014: 184-199. [14] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//IEEE Conference on Computer Vision & Pattern Recognition(CVPR) . Las Vegas: IEEE, 2016: 1646-1654. [15] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super- resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW) . Honolulu: IEEE, 2017: 1132-1140. [16] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super- resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR) . Las Vegas: IEEE, 2016: 1637-1645. [17] YING T, JIAN Y, LIU X. Image super-resolution via deep recursive residual network[C]//IEEE Conference on Computer Vision & Pattern Recognition(CVPR) . Honolulu: IEEE, 2017: 2790-2798. [18] TAI Y, YANG J, LIU X, et al. MemNet: a persistent memory network for image restoration[C]//IEEE International Conference on Computer Vision. Venice: IEEE Computer Society, 2017: 4549-4557. [19] AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]//Computer Vision ECCV 2018 15th European Conference. Martial: ECCV, 2018: 256-272. [20] ZHENG H, WANG X, GAO X . Fast and accurate single image super-resolution via information distillation network[C]//Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 723-731. [21] HUI Z, GAO X , YANG Y , et al. Lightweight image super-resolution with information multi-distillation network[C]//Proceedings of the 27th ACM International Conference on Multimedia. France: ACM, 2019: 2024-2032. [22] LIU J, TANG J, WU G. Residual feature distillation network for lightweight image super-resolution[C]//2020 ECCV Springer International Publishing. UK: Springer Cham, 2020: 41-55. [23] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[C]// Conference on Computer Vision and Pattern Recognition(CVPR) . Honolulu: IEEE, 2017: 112-121. [24] HAASE D, AMTHOR M. Rethinking depthwise separable convolutions: how intra-kernel correlations lead to Improved mobileNets[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR) . Seattle: IEEE, 2020: 14588-14597 . [25] GUO J, LI Y, LIN W , et al. Network decoupling: fom regular to depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR) . Salt Lake City: IEEE, 2018: 1879-1901. [26] ZHANG Y, LI K, LI K , et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Visionand Pattern Recognition(CVPR) . Munich: Springer, Cham, 2018: 286-301. [27] WANG Q , WU B , ZHU P , et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Seattle: IEEE, 2020: 11531-11539. [28] SUN L, PAN J, TANG J. ShuffleMixer: an efficient convNet for image super-resolution[C]//IEEE International Conference on Computer Vision. Hawaii: IEEE Computer Society, 2022: 321-329. [29] KONG F , LI M , LIU S , et al. Residual local feature network for efficient super-resolution[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) . New Orleans: IEEE, 2022: 765-775. [30] LI Z, LIU Y, CHEN X, et al. Blueprint separable residual network for efficient image super-resolution[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) . New Orleans: IEEE, 2022: 832-842. [31] ZHANG Y, TIAN Y, KONG Y, et al. Residual dense network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Munich: IEEE, 2018: 2472-2481. |
[1] | Tu Ze-liang, Cheng Liang-lun, Huang Guo-Heng. Local Orthogonal Feature Fusion for Few-Shot Image Classification [J]. Journal of Guangdong University of Technology, 2024, 41(02): 73-83. |
[2] | Gan Meng-kun, Zeng An, Zhang Xiao-bo. Aortic Re-coarctation Prediction Research Based on Swin-Unet [J]. Journal of Guangdong University of Technology, 2023, 40(05): 34-40. |
[3] | Chen Xiao-rong, Yang Xue-rong, Cheng Si-yuan, Liu Guo-dong. Surface Defect Detection of Lithium Battery Electrodes Based on Improved Unet Network [J]. Journal of Guangdong University of Technology, 2023, 40(04): 60-66,93. |
[4] | Lai Dong-sheng, Feng Kai-ping, Luo Li-hong. Facial Expression Recognition Based on Multi-feature Fusion [J]. Journal of Guangdong University of Technology, 2023, 40(03): 10-16. |
[5] | Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21. |
[6] | Huang Jian-hang, Wang Zhen-you. A Research on Deep Learning Object Detection Algorithm Based on Feature Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(04): 52-58. |
[7] | Gao Jun-yan, Liu Wen-yin, Yang Zhen-guo. Object Tracking Combined with Attention and Feature Fusion [J]. Journal of Guangdong University of Technology, 2019, 36(04): 18-23. |
|