Journal of Guangdong University of Technology
Li Ling-jiang, Chen Shu, Yang Zu-yuan
CLC Number:
[1] DUTTA MAJUMDAR J, MANNA I. Laser processing of materials[J]. Sadhana, 2003, 28: 495-562. [2] AZADGOLI B, BAKER R Y. Laser applications in surgery[J]. Annals of Translational Medicine, 2016, 4(23): 452. [3] POEHLMANN W, VAN VEEN D, FARAH R, et al. Wavelength drift of burst-mode DML for TWDM-PON[J]. Journal of Optical Communications and Networking, 2015, 7(1): A44-A51. [4] VLADIMIROV Y A, OSIPOV A N, KLEBANOV G I. Photobiological principles of therapeutic applications of laser radiation[J]. Biochemistry (Moscow) , 2004, 69: 81-90. [5] FUJITA M, OHKAWA H, SOMEKAWA T, et al. Wavelength and pulsewidth dependences of laser processing of CFRP[J]. Physics Procedia, 2016, 83: 1031-1036. [6] SANTOSA I E. A double beam Fabry-perot interferometer for measuring laser wavelength[J]. European Journal of Physics, 2021, 42(3): 035301. [7] YAN L, CHEN B, ZHANG S, et al. Note: laser wavelength precision measurement based on a laser synthetic wavelength interferometer[J]. Review of Scientific Instruments, 2016, 87(8): 086101. [8] CHEN X, ZHOU C, FAN D, et al. Modified frequency-shifted interferometer: encoding wavelength into phase[J]. Chinese Optics Letters, 2020, 18(10): 101203. [9] 杨仕广, 吴海波, 焦洋. 基于光学劈尖干涉的激光波长测量系统研究[J]. 电子测量与仪器学报, 2009, 23(8): 56-60. YANG S G, WU H B, JIAO Y. Laser wavelength measurement system based on optical wedge interference[J]. Journal of Electronic Measurement and Instrumentation, 2009, 23(8): 56-60. [10] 张昕, 李鹏伟, 岳耀笠, 等. 一种基于3×3光纤耦合器的激光波长测量方法[J]. 光通信技术, 2023, 47(5): 84-87. ZHANG X, LI P W, YUE Y L, et al. Laser wavelength measurement method based on 3×3 fiber coupler[J]. Optical Communication Technology, 2023, 47(5): 84-87. [11] 王仁洲, 杨涛. 一种用激光干涉测量光波波长的新方法[J]. 大学物理实验, 2014, 27(6): 41-43. WANG R Z, YANG T. A new method to measure wavelength of light by laser interferometer[J]. Physical Experiment of College, 2014, 27(6): 41-43. [12] 付林, 张记龙, 王志斌. 光栅衍射法实时测量脉冲激光波长和方向[J]. 光电工程, 2005(7): 30-32. FU L, ZHANG J L, WANG Z B. Measurement of pulsed-laser wavelength and direction in real time by grating diffraction method[J]. Opto-Electronic Engineering, 2005(7): 30-32. [13] MOHAGHEGHIAN M, SABOURI S G. Laser wavelength measurement based on a digital micromirror device[J]. IEEE Potonics Technology Letters, 2018, 30(13): 1186-1189. [14] O’DONNELL L, DHOLAKIA K, BRUCE G D. High speed determination of laser wavelength using Poincaré descriptors of speckle[J]. Optics Communications, 2020, 459: 124906. [15] BRUCE G D, O’DONNELL L, CHEN M, et al. Femtometer-resolved simultaneous measurement of multiple laser wavelengths in a speckle wavemeter[J]. Optics Letters, 2020, 45(7): 1926-1929. [16] HAPPACH M, DE FELIPE D, FRIEDHOFF V N, et al. Wavelength locking and determination in tunable lasers by gain Voltage measurement[J]. Journal of Lightwave Technology, 2021, 40(7): 2045-2051. [17] TAO B, LEI Q, YE J, et al. Measurements and analysis of diode laser modulation wavelength at high accuracy and response rate[J]. Applied Physics B, 2020, 126: 1-7. [18] QUAN W, LI X, LIU J, et al. Genetic algorithm for accurate modeling of distributed bragg reflector laser power and wavelength[J]. Optical Engineering, 2019, 58(2): 026108-026108. [19] ÁLVAREZ-TAMAYO R I, PRIETO-CORTÉS P, DURÁN-SÁNCHEZ M, et al. Laser wavelength estimation method based on a high-birefringence fiber loop mirror[J]. Photonic Sensors, 2019, 9: 89-96. [20] CHRISTENSEN M, HANSEN A K, NOORDEGRAAF D, et al. Second-harmonic-generation-based technique for examining laser diode wavelength dynamics in the μs to ms range[J]. Applied Optics, 2018, 57(6): 1432-1436. [21] 朱咸昌, 伍凡, 曹学东, 等. 光栅衍射法测量微透镜列阵焦距时产生的光斑干扰分析[J]. 光学学报, 2011, 31(11): 178-184. ZHU X C, WU F, CAO X D, et al. Analysis of focus dislocation induced by the microlens array measuring based on grating diffraction[J]. Acta Optica Sinica, 2011, 31(11): 178-184. [22] KOTOV M M , DANKO V P , GOLOBORODKO A A. Simulation of Talbot effect from a binary phase grating using Fresnel integral approach[J]. Optics and Lasers in Engineering, 2021, 137: 106400. [23] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). San Piego IEEE, 2005, 1: 886-893. [24] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on pattern analysis and machine intelligence, 2002, 24(7): 971-987. [25] HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973(6): 610-621. [26] HU Z, NIE F, CHANG W, et al. Multi-view spectral clustering via sparse graph learning[J]. Neurocomputing, 2020, 384: 1-10. [27] NIE F, HUANG H, DING C. Low-rank matrix recovery via efficient schatten p-norm minimization[C]//Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. Ontario: AAAI, 2012, 26(1): 655-661. [28] ARTHUR D, VASSILVITSKII S. k-means++: the advantages of careful seeding[R]. Stanford, 2006. [29] YOU X, LI H, YOU J, et al. Consider high-order consistency for multi-view clustering[J]. Neural Computing and Applications, 2024, 36(2): 717-729. [30] HE Z, WAN S, ZAPPATORE M, et al. A similarity matrix low-rank approximation and inconsistency separation fusion approach for multiview clustering[J]. IEEE Transactions on Artificial Intelligence, 2023, 5(2): 868-881. [31] ZHOU P, DU L. Learnable graph filter for multi-view clustering[C]//Proceedings of the 31st ACM International Conference on Multimedia. Ottawa: Association for Computing Machinery, 2023: 3089-3098. [32] YANG B, ZHANG X, NIE F, et al. ECCA: Efficient correntropy-based clustering algorithm with orthogonal concept factorization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(10): 7377-7390. [33] STEINLEY D. Properties of the hubert-arable adjusted rand index[J]. Psychological Methods, 2004, 9(3): 386. [34] WU M, SCHÖLKOPF B. A local learning approach for clustering [C]//Proceedings of the 19th International Conference on Neural Information Processing Systems. Canada: MIT Press, 2006: 1529-1536. |
[1] | Chen Shu, Zhu Zheng-dong, Yang Zu-yuan, Li Zhen-ni. Co-consensus Multi-view Spectral Clustering [J]. Journal of Guangdong University of Technology, 2024, 41(04): 98-105.doi: 10.12052/gdutxb.240058 |
[2] | Cai Hao, Liu Bo. A Semi-supervised Two-view Multiple-Instance Clustering Model [J]. Journal of Guangdong University of Technology, 2021, 38(03): 22-28,47.doi: 10.12052/gdutxb.240058 |
[3] | Zhang Wei, Mai Zhi-shen. A Research on Local Outlier Factor De-noising Method for Kernel Fuzzy Spectral Clustering [J]. Journal of Guangdong University of Technology, 2018, 35(06): 77-82.doi: 10.12052/gdutxb.240058 |
|