Journal of Guangdong University of Technology ›› 2025, Vol. 42 ›› Issue (1): 60-69.doi: 10.12052/gdutxb.240091
• Smart Medical • Previous Articles
Liao Haolin, Li Si
CLC Number:
[1] FELDKAMP L A, DAVIS L C, KRESS J W. Practical cone-beam algorithm[J]. Journal of the Optical of America A, 1984, 1(6): 612-619. [2] RONCHETTI M. Torchradon: fast differentiable routines for computed tomography[EB/OL]. arXiv: 2009.14788(2020-09-29) [2024-09-24]. https://arxiv.org/abs/2009.14788. [3] ANDERSEN A H, KAK A C. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm[J]. Ultrasonic Imaging, 1984, 6(1): 81-94. [4] LI S, ZHANG J, KROL A, et al. Effective noise‐suppressed and artifact‐reduced reconstruction of SPECT data using a preconditioned alternating projection algorithm[J]. Medical Physics, 2015, 42(8): 4872-4887. [5] 叶文权, 李斯, 凌捷. 基于多级残差U-Net的稀疏SPECT图像重建[J]. 广东工业大学学报, 2023, 40(1): 61-67. YE W Q, LI S, LING J. Sparse-view SPECT image reconstruction based on multilevel-residual U-Net[J]. Journal of Guangdong University of Technology, 2023, 40(1): 61-67. [6] 夏皓, 蔡念, 王平, 等. 基于多分辨率学习卷积神经网络的磁共振图像超分辨率重建[J]. 广东工业大学学报, 2020, 37(6): 26-31. XIA H, CAI N, WANG P, et al. Magnetic resonance image super-resolution via multi-resolution learning[J]. Journal of Guangdong University of Technology, 2020, 37(6): 26-31. [7] 梁宇辰, 蔡念, 欧阳文生, 等. 基于切片关联信息的慢性阻塞性肺疾病CT诊断[J]. 广东工业大学学报, 2024, 41(1): 27-33. LIANG Y C, CAI N, OUYANG W S, et al. CT diagnosis of chronic obstructive pulmonary disease based on slice correlation information[J]. Journal of Guangdong University of Technology, 2024, 41(1): 27-33. [8] 郑煜, 蔡念, 欧阳文生, 等. 基于深度关联机制的肝胆管超分辨率分割[J]. 广东工业大学学报, 2023, 40(5): 41-46. ZHENG Y, CAI N, OUYANG W S, et al. Super-resolution segmentation of hepatobiliary ducts based on deep correlation mechanism[J]. Journal of Guangdong University of Technology, 2023, 40(5): 41-46. [9] 曾安, 陈旭宙, 姬玉柱, 等. 基于自注意力和三维卷积的心脏多类分割方法[J]. 广东工业大学学报, 2023, 40(6): 168-175. ZENG A, CHEN X Z, JI Y Z, et al. Cardiac multiclass segmentation method based on self-attention and 3D convolution[J]. Journal of Guangdong University of Technology, 2023, 40(6): 168-175. [10] MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99-106. [11] WANG Y, LI Y, LIU P, et al. NeXT: towards high quality neural radiance fields via multi-skip transformer[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 69-86. [12] REMATAS K, MARTIN-BRUALLA R, FERRARI V. ShaRF: shape-conditioned radiance fields from a single view[EB/OL]. arXiv: 2102.08860(2021-06-23) [2024-09-24]. https://arxiv.org/abs/2102.08860. [13] YU A, YE V, TANCIK M, et al. Pixelnerf: neural radiance fields from one or few images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 4578-4587. [14] REISER C, PENG S, LIAO Y, et al. KiloNeRF: speeding up neural radiance fields with thousands of tiny mlps[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 14335-14345. [15] 肖祎龙, 邓伊琴, 陈志刚. 面向动态三维人体重建的神经辐射场加速方法[EB/OL]. (2024-06-14) [2024-09-24]. https://doi.org/10.19678/ j.issn.1000-3428.0069317. [16] ZHA R, ZHANG Y, LI H. NAF: neural attenuation fields for sparse-view CBCT reconstruction[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 442-452. [17] XIAN J M, ZHU J, LIAO H L, et al. Frequency-regularized neural representation method for sparse-view tomographic reconstruction[EB/OL]. arXiv: 2409.14394 (2024-09-24) [2024-09-24]. https://arxiv.org/abs/2409.14394. [18] FANG Y, MEI L, LI C, et al. SNAF: sparse-view CBCT reconstruction with neural attenuation fields[EB/OL]. arXiv: 2211.17048 (2022-11-30) [2024-09-24]. https://arxiv.org/abs/2211.17048. [19] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. Long Beach: Curran Associates, 2017: 5998–6008. [20] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies(NAACL-HLT) . Minneapolis: ACL, 2019: 4171-4186. [21] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[C]// Proceeding of the 9th International Conference on Learning Representations. Vienna: OpenReview. net, 2021: 1-21. [22] YUAN L, CHEN Y, WANG T, et al. Tokens-to-token ViT: training vision transformers from scratch on imagenet[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 558-567. [23] XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[J]. Advances in Neural Information Processing Systems, 2021, 34: 12077-12090. [24] DAI Z, CAI B, LIN Y, et al. UP-DETR: unsupervised pre-training for object detection with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 1601-1610. [25] CHEN J, LU Y, YU Q, et al. TransUNet: transformers make strong encoders for medical image segmentation[EB/OL]. arXiv: 2102.043 06 (2021-02-08) [2024-09-24]. https://arxiv.org/abs/2102.04306. [26] ZHANG Z, YU L, LIANG X, et al. TransCT: dual-path transformer for low dose computed tomography[C]//Medical Image Computing and Computer Assisted Intervention. Strasbourg: Springer, 2021: 55-64. [27] 范国玉. 基于transformer和生成对抗网络的3D人脸生成和重建研究[D]. 南京: 南京邮电大学, 2023. [28] WANG Q, WANG Z, GENOVA K, et al. IBRNet: learning multi-view image-based rendering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 4690-4699. [29] MÜLLER T, EVANS A, SCHIED C, et al. Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM Transactions on Graphics (TOG) , 2022, 41(4): 1-15. [30] ARMATO III S G, MCLENNAN G, BIDAUT L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans[J]. Medical Physics, 2011, 38(2): 915-931. [31] KLACANSKY P. Open scientific visualization datasets[EB/OL]. (2024-05-16) [2024-09-24]. https://klacansky.com/open-scivis-datasets/. [32] LJUNGBERG M, STRAND S E, KING M A. Monte Carlo calculations in nuclear medicine: applications in diagnostic imaging[M]. Boca Raton, FL: CRC Press, 2012: 287-312. [33] SEGARS W P, STURGEON G, MENDONCA S, et al. 4D XCAT phantom for multimodality imaging research[J]. Medical Physics, 2010, 37(9): 4902-4915. |
[1] | Lai Zhi-mao, Zhang Yun, Li Dong. A Survey of Deepfake Detection Techniques Based on Transformer [J]. Journal of Guangdong University of Technology, 2023, 40(06): 155-167.doi: 10.12052/gdutxb.240091 |
[2] | Zeng An, Chen Xu-zhou, Ji Yu-Zhu, Pan Dan, Xu Xiao-Wei. Cardiac Multiclass Segmentation Method Based on Self-attention and 3D Convolution [J]. Journal of Guangdong University of Technology, 2023, 40(06): 168-175.doi: 10.12052/gdutxb.240091 |
[3] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9.doi: 10.12052/gdutxb.240091 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 119
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 98
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|