Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (06): 1-19.doi: 10.12052/gdutxb.240145
• Integrated Circuit Science and Engineering • Next Articles
Wang Zhen-yu1, Xie Huan-lin2, Tian Jia-wei2, Jian Ming-chao1, Chen Hao1, Yang Jia-jun2, Li Ming-jie1, Guo Chun-bing2
CLC Number:
[1] MURMANN B, et al. ADC performance survey 1997-2022[EB/OL]. (2023-10-03) [2024-11-10]. https://github.com/bmurmann/ADC-survey. [2] 张军, 何方, 徐海宁, 等. 高性能音频模数转换器TLV320ADC6140的应用技术研究[J]. 电子世界, 2020(15): 31-33. [3] EUN J P , HA Y H , KYOON D J. A 0.4-to-1 V voltage scalable Delta Sigma ADC with two-step hybrid integrator for iot sensor applications in 65-nm LP CMOS[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(12): 1417-1421 [4] 郭仲杰, 苏昌勖, 许睿明, 等. 基于粗细量化并行与TDC混合的CMOS图像传感器列级ADC设计方法[J]. 电子学报, 2024, 52(2): 486-499. GUO Z J, SU C X, XU R M, et al. Column level ADC design method of CMOS image sensor based on coarse and fine quantization parallel and TDC hybrid[J]. Acta Electronica Sinica, 2024, 52(2): 486-499. [5] LIU J, LUO Z, XIONG X. Low-resolution ADCs for wireless communication: a comprehensive survey[J]. IEEE Access, 2019, 7: 91291-91324. [6] 华玉, 冯伟, 曹俊诚. 6G技术愿景与太赫兹通信电路研究进展[J]. 移动通信, 2023, 47(5): 7-13. HUA Y, FENG W, CAO J C. Advancements in terahertz communication circuits for 6G technology vision[J]. Mobile Communications, 2023, 47(5): 7-13. [7] NYQUIST H. Certain topics in telegraph transmission theory[J]. Transactions of the American Institute of Electrical Engineers, 1928, 47(2): 617-644. [8] MALOBERTI F. Data converters specifications[M]. Berlin: Springer, 2007. [9] 朱樟明, 杨银堂. 低功耗CMOS逐次逼近型模数转换器[M]. 北京: 科学出版社, 2015. [10] PAVAN S, SCHREIER R, TEMES G C. Understanding delta-sigma data converters[M]. Hoboken, NJ, USA: Wiley, 2017. [11] PETERSON J G. A monolithic video A/D converter[J]. IEEE Journal of Solid-State Circuits, 1979, 14(6): 932-937. [12] LEWIS S H, GRAY P R. A pipelined 5-Msample/s 9 bit analog-to-digital converter[J]. IEEE Journal of Solid-State Circuits, 1987, 22(6): 954-961. [13] LI J, MALOBERTI F. Pipeline of successive approximation converters with optimum power merit factor[C]//9th International Conference on Electronics, Circuits and Systems. Dubrovnik: IEEE, 2002, 1: 17-20. [14] CHAE Y, SOURI K, MAKINWA K A A. A 6.3 μW 20 bit incremental zoom-ADC with 6 ppm INL and 1 μV offset[J]. IEEE Journal of Solid-State Circuits, 2013, 48(12): 3019-3027. [15] FREDENBURG J A, FLYNN M P. A 90-MS/s 11-MHz-bandwidth 62-dB SNDR noise-shaping SAR ADC[J]. IEEE Journal of Solid-State Circuits, 2012, 47(12): 2898-2904. [16] RABII S, WOOLEY B A. A 1.8-V digital-audio sigma-delta modulator in 0.8-μm CMOS[J]. IEEE Journal of Solid-State Circuits, 1997, 32(6): 783-796. [17] ELAND E, KARMAKAR S, GÖNEN B, et al. A 440-μW, 109.8-dB DR, 106.5-dB SNDR discrete-time zoom ADC with a 20-kHz BW[J]. IEEE Journal of Solid-State Circuits, 2021, 56(4): 1207-1215. [18] ZHANG Y, QIAO D. Energy efficiency of indoor THz communication systems with finite bit DACs/ADCs under minimum rate constraints[C]//2022 IEEE/CIC International Conference on Communications in China (ICCC). Sanshui: IEEE, 2022: 1044-1049. [19] ALI A M A. High speed data converters[M]. London: Institution of Engineering and Technology, 2016. [20] TANG X, LIU J, SHEN Y, et al. Low-power SAR ADC design: overview and survey of state-of-the-art techniques[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(6): 2249-2262. [21] MCCREARY J L, GRAY P R. All-MOS charge redistribution analog-to-digital conversion techniques. I[J]. IEEE Journal of Solid-State Circuits, 1975, 10(6): 371-379. [22] 刘伟, 郭尚尚, 商世广. 用于CZT探测器前端的数字自校准SAR-ADC设计[J]. 电子测量与仪器学报, 2022, 36(9): 167-173. LIU W, GUO S S, SHANG S G. Design of SAR-ADC with digital self-calibration for CZT detectors front-ends[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(9): 167-173. [23] ZHOU Y, XU B, CHIU Y. A 12-b 1-GS/s 31.5-mW time-interleaved SAR ADC with analog HPF-assisted skew calibration and randomly sampling reference ADC[J]. IEEE Journal of Solid-State Circuits, 2019, 54(8): 2207-2218. [24] HASSAN A W, ZHOU D, SILVA-MARTINEZ J. Matrix-based digital calibration technique for high-performance SAR and pipeline ADCs[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 71(1): 20-28. [25] WEI H, CHAN C H, CHIO U F, et al. An 8-b 400-MS/s 2-b-per-cycle SAR ADC with resistive DAC[J]. IEEE Journal of Solid-State Circuits, 2012, 47(11): 2763-2772. [26] FURUTA M, NOZAWA M, ITAKURA T. A 10 bit, 40-MS/s, 1.21 mW pipelined SAR ADC using single-ended 1.5 bit/cycle conversion technique[J]. IEEE Journal of Solid-state Circuits, 2011, 46(6): 1360-1370. [27] 庞稼玺, 李强. 一种单通道7 bit 1.25 GS/s高速低功耗SAR ADC[J/OL]. 微电子学 (2024-09-03) [2024-11-29]. [28] LIU C C, CHANG S J, HUANG G Y, et al. A 10 bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure[J]. IEEE Journal of Solid-State Circuits, 2010, 45(4): 731-740. [29] GINSBURG B P, CHANDRAKASAN A P. 500-MS/s 5 bit ADC in 65-nm CMOS with split capacitor array DAC[J]. IEEE Journal of Solid-State Circuits, 2007, 42(4): 739-747. [30] ZHU Y, CHAN C H, CHIO U F, et al. A 10 bit 100-MS/s reference-free SAR ADC in 90 nm CMOS[J]. IEEE Journal of Solid-State circuits, 2010, 45(6): 1111-1121. [31] JIAN M C, ZHENG J W, KONG X J, et al. A 12 bit SAR ADC with a reversible VCM-based capacitor switching scheme[J]. Microelectronics Journal, 2022, 129: 105588. [32] RAZAVI B. The StrongARM latch[J]. IEEE Solid-State Circuits Magazine, 2015, 7(2): 12-17. [33] SCHINKEL D, MENSINK E, KLUMPERINK E, et al. A double-tail latch-type voltage sense amplifier with 18ps setup+hold time[C]//2007 IEEE International Solid-state Circuits Conference. Digest of technical papers. San Francisco: IEEE, 2007: 314-605. [34] BINDRA H S, LOKIN C E, SCHINKEL D, et al. A 1.2-V dynamic bias latch-type comparator in 65-nm CMOS with 0.4-mV input noise[J]. IEEE Journal of Solid-State Circuits, 2018, 53(7): 1902-1912. [35] 杨德旺, 张春华, 郭春炳. 一种超低输入共模电压的动态比较器电路设计[J]. 电子技术应用, 2021, 47(10): 48-52. YANG D W, ZHANG C H, GUO C B. Design of a dynamic comparator circuit for ultra-low input common-mode voltage[J]. Application of Electronic Technique, 2021, 47(10): 48-52. [36] 简明朝, 张春华, 符业聪, 等. 一种低功耗动态比较器: CN116488622B[P]. 2024-02-02. [37] HSIEH S E, KAO C C, HSIEH C C. A 0.5-V 12 bit SAR ADC using adaptive time-domain comparator with noise optimization[J]. IEEE Journal Solid-State Circuits, 2018, 53(10): 2763-2771. [38] LEE S K, PARK S J, PARK H J, et al. A 21 fJ/conversion-step 100 kS/s 10 bit ADC with a low-noise time-domain comparator for low-power sensor interface[J]. IEEE Journal of Solid-State Circuits, 2011, 46(3): 651-659. [39] CHEN S W M, BRODERSEN R W. A 6 bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS[J]. IEEE Journal of Solid-State Circuits, 2006, 41(12): 2669-2680. [40] KUTTNER F. A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13 μm CMOS[C]//2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No. 02CH37315). San Francisco: IEEE, 2002: 176-177. [41] KIRAN S, CAI S, LUO Y, et al. A 52-Gb/s ADC-based PAM-4 receiver with comparator-assisted 2 bit/stage SAR ADC and partially unrolled DFE in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2018, 54(3): 659-671. [42] 刘宇航, 曹晓东, 张雪莲, 等. 基于整数权重的非二进制SAR ADC及其校准算法的设计[J]. 北京交通大学学报, 2022(2): 046. LIU Y H, CAO X D, ZHANG X L, et al. Design of integer-weight-based non-binary SAR ADC and calibration algorithm[J]. Journal of Beijing Jiaotong University, 2022(2): 46. [43] 陈晓青, 叶凡. 非二进制SAR ADC的电容失配校正方法[J]. 计算机工程与设计, 2018, 39(6): 7. CHEN X Q, YE F. Calibration for capacitor weight error of non-binary SAR ADC[J]. Computer Engineering and Design, 2018, 39(6): 7. [44] CAO Z, YAN S, LI Y. A 32 mW 1.25 GS/s 6b 2b/step SAR ADC in 0.13 μm CMOS[J]. IEEE Journal Solid-State Circuits, 2009, 44(3): 862-873. [45] KULL L, TOIFL T, SCHMATZ M, et al. A 3.1 mW 8b 1.2 GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32 nm digital SOI CMOS[J]. IEEE Journal of Solid-State Circuits, 2013, 48(12): 3049-3058. [46] JIANG T, LIU W, ZHONG F Y, et al. Single-channel, 1.25-GS/s, 6 bit, loop-unrolled asynchronous SAR-ADC in 40nm-CMOS[C]//IEEE Custom Integrated Circuits Conference 2010. San Jose: IEEE, 2010: 1-4. [47] LIU S, RABUSKE T, PARAMESH J, et al. Analysis and background self-calibration of comparator offset in loop-unrolled SAR ADCs[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 65(2): 458-470. [48] LEE E, PYO C, LEE S, et al. A 1.5-GS/s 6 bit single-channel loop-unrolled SAR ADC with speculative CDAC switching control technique in 28-nm CMOS[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(10): 3954-3964. [49] BUHR S, MATTHUS C D, KHAFAJI M M, et al. A 1.38-mW 7 bit 1.7-GS/s single-channel loop-unrolled SAR ADC in 22-nm FD-SOI with 8.85 fJ/Conv. -step for GHz mobile communication and radar systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(9): 3841-3851. [50] OH D R, MOON K J, LIM W M, et al. An 8 bit 1-GS/s asynchronous loop-unrolled SAR-flash ADC with complementary dynamic amplifiers in 28-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2020, 56(4): 1216-1226. [51] 郭仲杰, 王杨乐, 许睿明, 等. 应用于CMOS图像传感器的高速全差分两步式ADC设计方法[J]. 电子与信息学报, 2023, 45(9): 3410-3419. GUO Z J, WANG Y L, XU R M, et al. High-speed fully differential two-step ADC design method for CMOS image sensor[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3410-3419. [52] 卢新民, 侯文杰, 谢凌霄. 一个转换时间280 ns的10 bit两级流水线式循环ADC设计[J]. 固体电子学研究与进展, 2020, 40(5): 378-383. LU X M, HOU W J, XIE L X. Design of a 10 bit 280 ns conversion time two-stage pipelined cyclic ADC[J]. Research & Progress of SSE, 2020, 40(5): 378-383. [53] WU C, YUAN J. A 12 bit, 300-MS/s single-channel pipelined-SAR ADC with an open-loop MDAC[J]. IEEE Journal of Solid-State Circuits, 2019, 54(5): 1446-1454. [54] FU Y, JIAN M, ZHENG J, et al. A 100ms/s 12 bit SAR-assisted pipeline ADC with gain-enhanced fully differential ring amplifier[C]//2023 IEEE MTT-S International Wireless Symposium (IWS). Qingdao: IEEE, 2023: 1-3. [55] GUO X, CHEN R, CHEN Z, et al. A 13b 600-675MS/s tri-state pipelined-SAR adc with inverter-based open-loop residue amplifier[J]. IEEE Journal of Solid-State Circuits, 2022, 58(3): 624-633. [56] KWON Y, KIM T, SUN N, et al. A 348-μW 68.8-dB SNDR 20-MS/s pipelined SAR ADC with a closed-loop two-stage dynamic amplifier[J]. IEEE Solid-State Circuits Letters, 2021, 4: 166-169. [57] 李树明. 基于新型环形放大器的低功耗Pipelined SAR ADC[J]. 中国集成电路, 2024, 33(5): 50-56. LI S M. Low power consumption Pipelined SAR ADC based on a novel ring amplifier[J]. China lntegrated Circuit, 2024, 33(5): 50-56. [58] ZHAO H, DAI F F. A 12 bit 260-MS/s pipelined-SAR ADC with ring-TDC-based fine quantizer for automatic cross-domain scale alignment[J]. IEEE Journal of Solid-State Circuits, 2023, 58(10): 2883-2896. [59] RAZAVI B. The delta-sigma modulator[J]. IEEE Solid State Circuits Mag., 2016, 8(2): 10-15. [60] VERREAULT A, CICEK P V, ROBICHAUD A. oversampling ADC: a review of recent design trends[J]. IEEE Access, 2024, 12: 121753-121779. [61] 王阁藩, 李恺, 刘博, 等. 一种新型的高精度Sigma_Delta调制器结构[J]. 电子测量技术, 2022, 45(12): 1-5. WANG G F, LI K, LIU B, et al. A new high-precision Sigma_Delta modulator structure[J]. Electronic Measurement Technology, 2022, 45(12): 1-5. [62] KARMAKAR S, GÖNEN B, SEBASTIANO F, et al. A 280 μW dynamic zoom ADC with 120 dB DR and 118 dB SNDR in 1 kHz BW[J]. IEEE Journal of Solid-State Circuits, 2018, 53(12): 3497-3507. [63] ROH J, BYUN S, CHOI Y, et al. A 0.9-V 60-μW 1 bit fourth-order delta-sigma modulator with 83-dB dynamic range[J]. IEEE Journal of Solid-State Circuits, 2008, 43(2): 361-370. [64] HAYASHI T, INABE Y, UCHIMURA K, et al. A multistage delta-sigma modulator without double integration loop[C]//1986 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. Anaheim: IEEE, 1986: 182-183. [65] FUKAZAWA M, OSHIMA T, FUJIWARA M, et al. A CT 2-2 MASH ΔΣ ADC with multi-rate LMS-based background calibration and input-insensitive quantization-error extraction[J]. IEEE Journal of Solid-State Circuits, 2021, 56(10): 2943-2955. [66] HUANG J S, KUO S C, CHEN C H. A multistep multistage fifth-order incremental delta sigma analog-to-digital converter for sensor interfaces[J]. IEEE Journal of Solid-State Circuits, 2023, 58(10): 2733-2744. [67] 彭蠡霄, 汪东, 李振涛, 等. 一种级间运放共享的MASH结构Σ-Δ调制器[J]. 微电子学, 2024, 54(1): 38-44. PENG L X, WANG D, LI Z T, et al. A MASH structure interstage op-amp sharing Σ-Δ modulator[J]. Microelectronics, 2024, 54(1): 38-44. [68] MAGHARI N, KWON S, MOON U K. 74 dB SNDR multi-loop sturdy-mash delta-sigma modulator using 35 dB open-loop opamp gain[J]. IEEE Journal of Solid-State Circuits, 2009, 44(8): 2212-2221. [69] TAN G, TAN G, QIN X, LIU Y, et al. A 10 MHz-BW 85 dB-DR CT 0-4 mash delta-sigma modulator achieving +5 dBFS MSA[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(12): 4781-4792. [70] CHAE Y, HAN G. Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator[J]. IEEE Journal of Solid-State Circuits, 2009, 44(2): 458-472. [71] ZHANG C, JIAN M, YUAN M, et al. A Σ-Δ modulator based on an inverter-based integrator with dynamic current switch[J]. Journal of Physics: Conference Series, 2023, 2477(1): 012086. [72] MENG L, HU Y, ZHAO Y, et al. A 1.2-V 2.87-μW 94.0-dB SNDR discrete-time 2-0 MASH delta-sigma ADC[J]. IEEE Journal of Solid-State Circuits, 2022, 58(6): 1636-1645. [73] RAZAVI B. The bootstrapped switch[J]. IEEE Solid-State Circuits Magazine, 2015, 7(3): 12-15. [74] 高钧达, 郭春炳, 陆维立, 等. 一种具有低导通电阻的高速自举开关: CN113098455B[P]. 2022-05-10. [75] 刘晓为, 刘云涛, 姜一鸣, 等. 四阶Sigma-Delta微加速度计系统设计与分析[J]. 哈尔滨工业大学学报, 2011, 43(7): 38-41. LIU X W, LIU Y T, JIANG Y M, et al. System level design and anaysis of fourth-order sigma-delta micromachined accelerometer[J]. Journal of Harbin Institute of Technology, 2011, 43(7): 38-41. [76] JIANG D, SIN S W, QI L, et al. Recent advances in high-resolution hybrid discrete-time noise-shaping ADCs[J]. IEEE Open Journal of the Solid-State Circuits Society, 2021, 1: 129-139. [77] KAESSER P, ISMAIL O, RUDORF C, et al. Linear-exponential I-DS ADCs: analysis, limitations and higher order[C]//2023 IEEE International Symposium on Circuits and Systems (ISCAS). Monterey: IEEE, 2023. 1-5. [78] MOKHTAR M A, VOGELMANN P, ABDELAAL A, et al. FIR DACs in CT incremental delta-sigma modulators[C]//2020 IEEE International Symposium on Circuits and Systems (ISCAS). Seville: IEEE, 2020: 1-5. [79] PAVAN S, HALDER T, KANNAN A. continuous-time incremental delta-sigma modulators with FIR feedback[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(8): 3222-3231. [80] WANG B, SIN S W, SENG-PAN U, et al. A 1.2 V 86dB SNDR 500 kHz BW linear-exponential multi bit incremental ADC using positive feedback in 65 nm CMOS[C]//2019 IEEE Asian Solid-State Circuits Conference (A-SSCC). Macau: IEEE, 2019: 117-120. [81] WANG B, SIN S W, U S P, et al. A 550-μW 20-kHz BW 100.8-dB SNDR linear-exponential multi bit incremental ΣΔ ADC with 256 clock cycles in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2019, 54(4): 1161-1172. [82] 孙奥运, 温培旭, 邵淮先, 等. 高精度音频Sigma-Delta调制器综述[J]. 电子与信息学报, 2024, 46(5): 1874-1887. SUN A Y, WEN P X, SHAO H X, et al. A review of high-resolution audio sigma-delta modulator[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1874-1887. [83] CHAE H, FLYNN M P. A 69 dB SNDR, 25 MHz BW, 800 MS/s continuous-time bandpass Δ-Σ modulator using a duty-cycle-controlled DAC for low power and reconfigurability[J]. IEEE Journal of Solid-State Circuits, 2016, 51(3): 649-659. [84] BILLA S, SUKUMARAN A, PAVAN S. Analysis and design of continuous-time delta-sigma converters incorporating chopping[J]. IEEE Journal of Solid-State Circuits, 2017, 52(9): 2350-2361. [85] JANG M, LEE C, CHAE Y. A 134-μW 99.4-dB SNDR audio continuous-time delta-sigma modulator with chopped negative-R and Tri-level FIR-DAC[J]. IEEE Journal of Solid-State Circuits, 2021, 56(6): 1761-1771. [86] MOKHTAR M A, ABDELAAL A, SPORER M, et al. A 0.9-V calibration-free 97 dB-SFDR 2-MS/s continuous time incremental delta-sigma ADC utilizing variable bit width quantizer in 28 nm CMOS[C]//2021 IEEE Custom Integrated Circuits Conference (CICC). Austin: IEEE, 2021. 1-2. [87] YUAN M, JIAN M, ZHENG J, et al. Behavioral modeling and circuit design of high precision low power dynamic zoom ADC[J]. Journal of Physics: Conference Series, 2023, 2477(1): 012074. [88] SOURI K, MAKINWA K A A. A 0.12 mm2 7.4 μW micropower temperature sensor with an inaccuracy of ±0.2 ℃ (3σ) from -30 ℃ to 125 ℃[J]. IEEE Journal of Solid-State Circuits, 2011, 46(7): 1693-1700. [89] GÖNEN B, SEBASTIANO F, QUAN R, et al. A dynamic zoom ADC with 109-dB DR for audio applications[J]. IEEE Journal of Solid-State Circuits, 2017, 52(6): 1542-1550. [90] CHOI Y, LEE W, PARK S, et al. A 101.6-dB-SNDR fully dynamic zoom adc using miller-compensated floating inverter amplifiers[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(9): 4141-4145. [91] MA T, YUAN M, WANG Z, et al. A 180 μW dynamic zoom adc with 110 dB SNDR in 2 kHz BW[C]//2023 IEEE MTT-S International Wireless Symposium (IWS). Qingdao: IEEE, 2023: 1-3. [92] ZHAO Y, ZHAO M, TAN Z. Fully dynamic zoom-adc based on improved swing-enhanced FIAs using CLS technique with 1250×bandwidth/power scalability[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(6): 1901-1905. [93] LIANG Y, REN J, CHEN L, et al. A reconfigurable 12-to-18 bit dynamic zoom ADC with pole-optimized technique[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(5): 1940-1948. [94] KIM K S, KIM J, CHO S H. Nth-order multi bit ΣΔ ADC using SAR quantiser[J]. Electronics Letters, 2010, 46(19): 1315-1316. [95] SALGADO G M, O’HARE D, O’CONNELL I. Recent advances and trends in noise shaping SAR ADCs[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 68(2): 545-549. [96] LI S, QIAO B, GANDARA M, et al. A 13-ENOB second-order noise-shaping SAR ADC realizing optimized NTF zeros using the error-feedback structure[J]. IEEE Journal of Solid-State Circuits, 2018, 53(12): 3484-3496. [97] JIE L, TANG X, LIU J, et al. An overview of noise-shaping SAR ADC: from fundamentals to the frontier[J]. IEEE Open Journal of the Solid-State Circuits Society, 2021, 1: 149-161. [98] CHEN Z, MIYAHARA M, MATSUZAWA A. A 9.35-ENOB, 14.8 fJ/conv. -step fully-passive noise-shaping SAR ADC[C]//2015 Symposium on VLSI Circuits (VLSI Circuits). Kyoto: IEEE, 2015: C64-C65. [99] WANG T H, WU R, GUPTA V, et al. A 13.8-ENOB fully dynamic third-order noise-shaping SAR ADC in a single-amplifier EF-CIFF structure with hardware-reusing kT/C noise cancellation[J]. IEEE Journal of Solid-State Circuits, 2021, 56(12): 3668-3680. [100] ZHANG H, WANG X, LI N, et al. A 2.5-mhz bw, 75-dB SNDR noise-shaping SAR ADC with a 1st-order hybrid EF-CIFF structure assisted by unity-gain buffer[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(12): 1928-1932. [101] JIE L, ZHENG B, CHEN H W, et al. A cascaded noise-shaping SAR architecture for robust order extension[J]. IEEE Journal of Solid-State Circuits, 2020, 55(12): 3236-3247. [102] LIU J, LI D, ZHONG Y, TANG X, et al. A 250 kHz-BW 93 dB-SNDR 4th-order noise-shaping SAR using capacitor stacking and dynamic buffering[C]//2021 IEEE International Solid-State Circuits Conference (ISSCC). San Francisco: IEEE, 2021. 369-371. [103] BAIRD R T, FIEZ T S. Linearity enhancement of multibit Δ-Σ A/D and D/A converters using data weighted averaging[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1995, 42(12): 753-762. [104] OBATA K, MATSUKAWA K, MIKI T, et al. A 97.99 dB SNDR, 2 kHz BW, 37.1 μW noise-shaping SAR ADC with dynamic element matching and modulation dither effect[C]//2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits). Honolulu: IEEE, 2016. 1-2. [105] SHU Y S, KUO L T, LO T Y. An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR over 1 kHz BW in 55 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2016, 51(12): 2928-2940. [106] JIAN M, ZHENG J, KONG X, et al. A 73-dB-SNDR 2nd-Order noise-shaping SAR with a low-noise time-domain comparator[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(8): 3645-3649. [107] LI H, SHEN Y, CANTATORE E, et al. A 77.3-dB SNDR 62.5-kHz bandwidth continuous-time noise-shaping SAR ADC with duty-cycled Gm-C integrator[J]. IEEE Journal of Solid-State Circuits, 2023, 58(4): 939-948. [108] OH S, OH Y, LEE J, et al. An 85 dB DR 4 MHz BW pipelined noise-shaping SAR ADC with 1-2 MASH structure[J]. IEEE Journal of Solid-State Circuits, 2021, 56(11): 3424-3433. |
[1] | Zheng Ji-wei, Guo Chun-bing. A 16-bit Pipelined-SAR ADC with a Gain-enhanced Fully Differential Ring Amplifier [J]. Journal of Guangdong University of Technology, 2024, 41(06): 20-25.doi: 10.12052/gdutxb.240145 |
[2] | Cai Jian-xin,Wang Ren-huang,Huang Yin-yi. Application of Brightness Normalization in Image Processing [J]. Journal of Guangdong University of Technology, 2008, 25(4): 65-68.doi: 10.12052/gdutxb.240145 |
|