Journal of Guangdong University of Technology ›› 2012, Vol. 29 ›› Issue (3): 28-34.doi: 10.3969/j.issn.1007-7162.2012.03.005
• Comprehensive Studies • Previous Articles Next Articles
Liu Hongwei, Shi Yaqiang, Liang Zhouyang, Xiao Yue
[1] Agrawal R, Srikant R. Privacypreserving data mining[C]. Proceedings of the ACM SIGMOD Conference on Management of Data, Dallas, TX USA: ACM SIGMOD, 2000: 439-450.[2] Agrawal D, Aggarwal C C. On the design and quantification of privacy preserving data mining algorithms[C]. Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Santa Barbara, California, May 2001: 247-255.[3] Evfimevski A, Gehrke J, Srikant R. Limiting privacy breaches in privacy preserving data mining[C]. Proceedings of the ACM SIGMOD/PODS Conference San Diego, CA, June 2003.[4] Warner S L. Randomized Response: A survey technique for eliminating evasive answer bias[J]. Journal of the American Statistical Association, 1965, 60: 63-69.[5] Chen K, Liu L. A random rotation perturbation approach to privacy preserving data classification[D]. USA:Georgia Institute of Technology, 2005.[6] Liu K, Kargupta H, Ryan J. Random projectionbased multiplicative data perturbation for privacy preserving distributed data mining[J]. Knowledge and Data Engineering, IEEE Transactions on,2006,18(1): 92-106.[7] Aapo Hyvrinen, Jarmo Hurri, Patrik O Hoyer. Independent Component Analysis [M]. Computational Imaging and Vision, Springer London, 2009, 39: 151-175.[8] 李广彪,张剑云,毛云祥.盲源分离的发展及研究现状[J].航天对子对抗,2004(6):13-16.[9] Guo S,Wu X. Deriving private information from arbitrarily projected data[J]. Advances in Knowledge Discovery and Data Mining, 2007: 84-95.[10] Kargupta H, Datta S, Wang Q, et al. On the privacy preserving properties of random data perturbation techniques[C]. Proceedings of the 3rd IEEE International Conference on Data Mining, Melbourne, FL, USA, November 2003.[11] Guo S. Analysis of and techniques for privacy preserving data mining[M]. Ann Arbor: ProQuest Information and Learning Company, 2007.[12] Liu Kun. Multiplicative data perturbation for privacy preserving data mining[D]. Baltimore, MD, USA: University of Maryland Baltimore County, 2007.[13]Huang Z, Du W,Chen B. Deriving private information from randomized data[C]. Proceedings of the 2005 ACM 〖JP2〗SIGMOD Conference, Baltimroe, MD, June 2005: 3748.[14] Aggarwal C C, Yu P S. A condensation based approach to privacy preserving data mining[C]. Proceedings of the 9th International Conference on Extending Database Technology (EDBT’04), Heraklion, Crete, Greece, March 2004: 183-199.[15] 肖岳.移动数据的智能分析与隐私保护[D].广州:广东工业大学,2011.[16] 聂跃光.基于密度聚类的空间数据挖掘算法研究[D].太原:太原科技大学,2008. |
No related articles found! |
|