Journal of Guangdong University of Technology ›› 2008, Vol. 25 ›› Issue (2): 44-46.
• Comprehensive Studies • Previous Articles Next Articles
[1] Eriksson J,Koivunen V.Identifiability and separability oflinear ICA models revisited. Proceeding of Fourth In-ternational Symposium on Independent Component Analysisand Blind Signal Separation . 2003 [2] Davies M.Identifiability issues in noisy ICA. IEEE SigProc Letters . 2004 [3] Li Y,Wang J.Sequential blind extraction of linearly mixedsources. IEEE Transactions on Signal Processing . 2002 [4] Fuchs J J.Recovery of exact sparse representations in thepresence of noise. Proc.of IEEE International Confer-ence on Acoustics,Speech,and Signal Processing . 2004 [5] Donoho D L,Elad M,Temlyakov V N.Stable recovery ofsparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory . 2006 [6] CARDOSO J F.Blind signal separation: statistical principles. Proceedings of the IEEE . 1998 [7] Zibulevsky M,Pearlmutter B A.Blind source separation by sparse decomposition in a signal dictionary. Neural Computation . 2001 [8] Lee T W,,Lewicki M S,Girolami M,Sejnowski T J.Blind source separation of more sources than mixturesusing overcomplete representation. IEEE Signalprocessing letter . 1999 [9] Li Yuanqing,Cichocki A,and Amari S.Analysis of sparse representation and blind source separation. Neural Computation . 2004 [10] Y.Q.Li,S.Amari,A.Cichocki,and D.W.C.Ho."Underdetermined Blind Source Separation Based on Sparse Representation". IEEE Transactions on Signal Processing . 2006 [11] Gribonval, Remi,Nielsen, Morten.Sparse Representations in Unions of Bases. IEEE Transactions on Information Theory . 2003 [12] Donoho D L,Elad M.Maximal sparsity representation via l1 minimization. Proc National Academy Science . 2003 |
No related articles found! |
|