Journal of Guangdong University of Technology ›› 2009, Vol. 26 ›› Issue (1): 10-.

• Comprehensive Studies • Previous Articles     Next Articles

Perturbation Bounds of Semi-definite Positive Factors of M-P Inverse under Non-Preserving Rank Perturbating

  

  1. (Basic Department,Maoming Vocational and Technical College,Maoming 525000,China)
  • Online:2009-01-01 Published:2009-01-01

Abstract: Suppose the generalized polar decomposition of A+ and + are respectively A+=QH and +=■■,and H and ■ are n×m semi-definite positive factors.By using singular-value decomposition,unitarily invariant norm ‖·‖ and Frobenius norm ‖·‖F,the perturbation bound of semi-definite polar factors of Moore-Penrose generalized inverse matrix A+ under non-preserving rank perturbating is researched. 更多还原

Key words: generalized inverse matrix A+; semi-definite factor; singular-value decomposition; perturbation bound;

[1] 孙继广,陈春晖.  广义极分解[J]. 计算数学. 1989(03) 

[2] 孙继广著.矩阵扰动分析[M]. 科学出版社, 2001

[3] 王松桂,杨振海著.广义逆矩阵及其应用[M]. 北京工业大学出版社, 1996

[4] Li R C.Relative perturbation theory:I.Eigenvalue and sin-gular value variations. SIAM Journal on Matrix Analysis and Applications . 1998

[5] Li R C.A Perturbation Bound for the Generalized Polar Decomposition. BIT Numerical Math . 1993 [6] Daves C,Kahan W.The rotation of eigenvectors by a perturbation. SIAM Journal on Numerical Analysis . 1970
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!