Journal of Guangdong University of Technology ›› 2011, Vol. 28 ›› Issue (2): 69-70.

• Comprehensive Studies • Previous Articles     Next Articles

A Note on the Condition Number of Matrix Spectrum

  

  1. Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006, China
  • Online:2011-06-25 Published:2011-06-25

Abstract: The upper bound of a special kind of condition number of matrix spectrum is researched and estimated. The research supplements the estimation of such condition number in corresponding literature.

Key words:
spectrum condition number; 2 norms; upper bound

[1]孙继广. 矩阵扰动分析[M].北京:科学出版社,1987.

[2] Stewart G W, Sun J G. Matrix Perturbation Theory[M]. Boston:Academic Press,  1990.

[3] Bhatia R, Kittanen F, Li R C. Eigenvalues of symmetrizable matrices[J].BIT, 1998(38):1-11.

[4] 黎稳,孙伟伟.组合扰动界:II极分解[J].中国科学,A辑数学,2007,37(6):701708.

[5] Hoffman A J,  Wielandt H W.The variation of the spectrum of a normal matrix[J]. Duke Math J, 1953(20):37-39.

[6] Song Y Z.A note on the variation of the spectrum of an arbitary matrix[J]. Linear Algebra and its Application, 2002(342):41-46.

[7] Tristan Londre, Noah H Rhee. A note on relative perturbation bounds[J]. SIAM J.Matrix Analysis and its Applications, 1999,21:357-361.

[8] Song Y Z. A note on the variation of the spectrum of an arbitary matrix[J].Linear Algebra and its Application,2002,342:41-46.

[9] Li Rencang. Relative perturbation theory III: more bounds on eigenvalue variation[J].Linear Algebra and its Application, 1997,266:337-345.

[10] Ipsen C F. A note on absolute and relative perturbation bounds[J]. Linear Algebra and its Application,2003,358: 239-253.

[11] Fang Q. A note on condition number of matrix[J].J Comput Appl Math, 2003,157:231-234.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!