Journal of Guangdong University of Technology ›› 2011, Vol. 28 ›› Issue (2): 71-75.
• Comprehensive Studies • Previous Articles Next Articles
[1] Lakshmikantham,Balnov, Simeonov. Theory of Impulsive Differential Equations[M].Singapore:World Sci Publish Co,Inc,1989.[2] Okochi H.On the existence of antiperiodic solutions to a nonlinear evolution equations associated with differential operators[J].J Funct Anal,1990(91):246-258.[3] Chen Y Q,Wang F L,Zhou S L.Antiperiodic boundary value problems for finite dimensional differental systems[J].Boundary Value Problems,V.2009,2009.[4] 汪丽.一维反周期脉冲微分方程[D].广州:华南师范大学硕士论文,2006.[5] Chen Y Q, Wang X D, Xu H X.Antiperiodic solutions for semilinear evolution equations[J]. J Math Anal Appl, 2002,273:627-636.[6] Chen Y Q.Antiperiodic solutions for semilinear evolution equations[J]. J Math Anal Appl,2006,315:337-348.[7] Chen Y Q,Cho Y J, Regan D O.Antiperiodic solutions for evolution equations with mapping in class(S+)[J].Math Nachr, 2005,278:335-362.[8] Chen Y Q,Cho Y J, Jung J S. Antiperiodic solutions for semilinear evolution equations[J]. Mathematical and Computer Modeling, 2004,40:1123-1130.[9] Chen Y Q,Cho Y J, Wang L. Antiperiodic boundary value problems for impulsive differential equations[J]. Inter J Comput Appl Math,2006(1):9-16.[10] Chen Y Q, Nieto J J, O'Regan D.Antiperiodic solutions for fully nonlinear firstorder differential equations[J].Math Computer Modelling, 2007,46:1183-1190.[11] Franco D,Nieto J J. First order impulsive ordinary differential equations with antiperiodic and nonlinear boundary conditions[J].Nonlinear Anal,2000,42:163-173.[12] Franco D,Nieto J J, O'Regan D. Antiperiodic boundary value problem for nonlinear first order ordinary differential equations[J]. Math Inequal Appl,2003,6:477-485.[13] Franco D,Nieto J J, O'Regan D.Existence of solutions for first order ordinary differential equations with nonlinear boundary conditions[J]. Appl Math Comput,2004,153:793-802. |
No related articles found! |
|