Journal of Guangdong University of Technology ›› 2012, Vol. 29 ›› Issue (3): 1-11.doi: 10.3969/j.issn.1007-7162.2012.03.001
• Feature Articles • Next Articles
Cheng Zheng-dong1,2,3, Ye Jian 1,2, He Peng3,4, Zhang Hai-yan1, Chen Ying1, He Liqun5
[1] Perrin J. Brownian movement and molecular reality[J]. Annales De Chimie Et De Physique,1909,18:5 114.[2] Anderson V J, Lekkerkerker H N W. Insights into phase transition kinetics from colloid science [J]. Nature, 2002, 416(6883):811815.[3] Cheng Z D, Russell W B, Chaikin P M. Controlled growth of hardsphere colloidal crystals [J]. Nature, 1999,401:893895.[4] Cheng Z D, Chaikin P M, Zhu J X, et al. Crystallization kinetics of hard spheres in microgravity in the coexistence regime: Interactions between growing crystallites[J]. Physical Review Letters, 2002, 88:015501.[5] Cheng Z D, Zhu J X, Chaikin P M, et al. Nature of the divergence in low shear viscosity of colloidal hardsphere dispersions[J]. Physical Review E, 2002, 65(4):041405. [6] Pusey P N, Van Megen W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres[J].Nature,1986, 320(6060):340342.[7] Pusey P N, van Megen W, Bartlett P, et al. Structure of crystals of hard colloidal spheres[J]. Physical review letters, 1989, 63(25):27532756.[8] De Gennes P G, Prost J. The physics of liquid crystals[J]. Reviews of Modern Physcis, 1974, 46(4):597.[9] Usuki A, Hasegawa N, Kato M, et al. Polymerclay nanocomposites[J]. Inorganic Polymeric Nanocomposites and Membranes, 2005:124.〖ZK)〗[10] 〖ZK(#〗Onsager L. The effects of shape on the interaction of colloidal particles[J]. Annals of the New York Academy of Sciences, 1949, 51(4):627659.[11] Puntes V F, Zanchet D, Erdonmez C K, et al. Synthesis of hcpCo nanodisks[J]. Journal of the American Chemical Society, 2002, 124(43):1287412880.[12] Kim, Y H, Yoon D K, Jung H T. Recent advances in the fabrication of nanotemplates from supramolecular selforganization[J]. J Mater Chem, 2009, 19(48):90919102.[13] Lee G, Cho Y S, Park S, et al. Synthesis and assembly of anisotropic nanoparticles[J]. Korean Journal of Chemical Engineering, 2011:110.[14] Saunders A E, Ghezelbash A, Smilgies D M, et al. Columnar selfassembly of colloidal nanodisks[J]. Nano letters, 2006, 6(12):29592963. [15] Sigman Jr M B, Ghezelbash A, Hanrath T, et al. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks and nanoplatelets[J]. Journal of the American Chemical Society,2003,125(51):1605016057.[16] Van Der Kooij F M, Kassapidou K, Lekkerkerker H N W. Liquid crystal phase transitions in suspensions of polydisperse platelike particles[J]. Nature,2000, 406:868871.[17] Badaire S, CottinBizonne C, Joseph W, et al. Shape selectivity in the assembly of lithographically designed colloidal particles[J]. Journal of the American Chemical Society,2007, 129(1):4041.[18] Mason, T G. Osmotically driven shapedependent colloidal separations[J]. Physical Review E, 2002, 66(6):060402060402.[19] van der Kooij F M, Lekkerkerker H N W. Formation of nematic liquid crystals in suspensions of hard colloidal platelets[J]. The Journal of Physical Chemistry B, 1998, 102(40):78297832.[20] Brown A B D, Clarke S M, Rennie A R. Ordered phase of platelike particles in concentrated dispersions[J]. Langmuir, 1998, 14(11):31293132.[21] Mejia A F, He P, Luo D W, et al. Uniform discotic wax particles via electrospray emulsification[J]. Journal of Colloid and Interface Science, 2009, 334(1):2228.[22] Mejia A F, He P, Cheng Z D, et al. Surfacecontrolled shape design of discotic microparticles[J]. Soft Matter, 2010, 6(19):48854894.[23] Park M, Harrison C, Chaikin P M, et al. Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 1 square centimeter[J]. Science, 1997, 276(5317):14011404.[24] Hernandez C J, Zhao K, Mason T G. PillarDeposition Particle Templating: A HighThroughput Synthetic Route for Producing LithoParticles[J]. Soft Materials, 2007, 5(1):111.[25] Hernandez C J, Mason T G. Colloidal alphabet soup: monodisperse dispersions of shapedesigned lithoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(12):44774480.[26] Clearfield A, Stynes J A. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour[J]. Journal of Inorganic and Nuclear Chemistry, 1964, 26(1):117129.[27] Sun L, Boo W, Sun D, et al. Preparation of exfoliated {Epoxy/αZirconium} phosphate nanocomposites containing high aspect ratio nanoplatelets[J]. Chemistry of Materials,2007,19(7):17491754.[28] Hernandez Y, Nicolosi V, Lotya M, et al. Highyield production of graphene by liquidphase exfoliation of graphite[J]. Naturenanotechnology, 2008, 3:563568.[29] Gabriel J C P, Sanchez C, Davidson P. Observation of nematic liquidcrystal textures in aqueous gels of smectite clays[J]. The Journal of Physical Chemestry,1996,100(26):1113911143.[30] Sasaki T, Watanabe M, Hashizume H, et al. Macromoleculelike aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it[J]. J Am Chem Soc,1996, 118(35):83298335. [31] Wen P, Itoh H, Tang W, et al. Single nanocrystals of anatasetype TiO2 prepared from layered titanate nanosheets: Formation mechanism and characterization of surface properties[J]. Langmuir,2007, 23:1178211790.[32] AdachiPagano M, Forano C, Besse J P. Delamination of layered double hydroxides by use of surfactants[J]. Chem Commun,2000, (1):9192.[33] Treacy M M J, Rice S B, Jacobson A J, et al. Electron microscopy study of delamination in dispersions of the perovskiterelated layered phases K [Ca2Nan3NbnO3n1]: evidence for singlelayer formation [J]. Chem Mat,1990, 2(3):279286. [34] Saupe G B, Waraksa C C, Kim H N, et al. Nanoscale tubules formed by exfoliation of potassium hexaniobate[J]. Chem Mat,2000, 12(6):15561562.[35] Abe R, Hara M, Kondo J N, et al. Preparation of ionexchangeable thin films of layered niobate K4Nb6O17[J]. Chem Mat, 1998, 10(6):16471651. [36] Abe R, Shinohara K, Tanaka A, et al. Preparation of porous niobium oxides by softchemical process and their photocatalytic activity[J]. Chem Mat,1997, 9(10):21792184. [37] Schaak R E, Mallouk T E. Prying apart RuddlesdenPopper phases: Exfoliation into sheets and nanotubes for assembly of perovskite thin films[J]. Chem Mat, 2000, 12(11):34273434.[38] Miyamoto N, Yamamoto H, Kaito R, et al. Formation of extraordinarily large nanosheets from K4Nb6O17 crystals[J]. Chem Commun, 2002, 20:23782379.[39] Osterloh F E. Solution selfassembly of magnetic light modulators from exfoliated perovskite and magnetite nanoparticles[J]. J Am Chem Soc,2002, 124(22):62486249.[40] Keller S W, Kim H N, Mallouk T E. Layerbylayer assembly of Intercalation compounds and heterostructures on surfaces toward molecular beaker epitaxy[J]. J Am Chem Soc,1994, 116(19):88178818. [41] Kaschak D M, Lean J T, Waraksa C C, et al. Photoinduced energy and electron transfer reactions in lamellar polyanion/polycation thin films: Toward an inorganic “leaf”[J]. J Am Chem Soc, 1999,121(14):34353445.[42] Coleman J N, Lotya M, O’Neill A, et al. Twodimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017):568571.[43] Feynman R P. There’s plenty of room at the bottomAn invitation to enter a new field of physics[J]. Engineering and Science,1960,23(5): 2236.[44] Zocher H. Spontaneous structure formation in sols; a new kind of anisotropic liquid media[J]. Anorg Allg Chem,1925, 147:91110.[45] Klug A. The tobacco mosaic virus particle: structure and assembly[J]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences,1999, 354(1383):531535.[46] Veerman J A C,Frenkel D. Phase behavior of disklike hardcore mesogens[J]. Physical Review A,1992, 45(8):56325632.[47] Qazi S, Karlsson G, Rennie A. Selfassembled structures of disclike colloidal particles[J]. Trends in Colloid and Interface Science, XXIV,2011:6165.[48] Qazi S J S, Karlsson G, Rennie A R. Dispersions of platelike colloidal particles—Cubatic order[J]. Journal of colloid and interface science,2010,348(1):8084.[49] Tang A, Qu S, Li K, et al. Onepot synthesis and selfassembly of colloidal copper (I) sulfide nanocrystals[J]. Nanotechnology, 2010,21:285602285602.[50] Zhao K, Mason T G. Directing colloidal selfassembly through roughnesscontrolled depletion attractions[J]. Physical review letters, 2007,99(26):268301268301.[51] Ji H, Liu X, Wang X, et al. Selfassembly of disklike multiring ZnOSnO2 colloidal nanoparticles[J]. Journal of colloid and interface science,2011,356(2):412415.[52] Mejia A F, Chang Y W, Cheng Z D, et al. Aspect ratio and polydispersity dependence of isotropicnematic transition in discotic suspensions[J]. Physical Review E, 2012,85(6):061708.[53] Behabtu N, Lomeda J R, Green M J, et al. Spontaneous highconcentration dispersions and liquid crystals of graphene[J]. Nat Nanotechnol,2010,5(6):406411.[54] Kim J E, Han T H, Lee S H, et al. Graphene oxide liquid crystals[J]. Angew ChemInt Edit,2011, 50(13):30433047. [55] Dan B, Behabtu N, Martinez A, et al. Liquid crystals of aqueous, giant graphene oxide flakes[J]. Soft Matter,2011, 7(23):1115411159.[56] Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications, 2011,2:571.[57] Sun D, Sue H J, Cheng Z D, et al. Stable smectic phase in suspensions of polydisperse colloidal platelets with identical thickness[J]. Phys Rev E,2009, 80(4):041704.[58] Ruzicka B, Zaccarelli E, Zulian L, et al. Observation of empty liquids and equilibrium gels in a colloidal clay[J]. Nature Materials,2011,10(1):5660.[59] Langmuir I. The Role of Attractive and Repulsive Forces in the Formation of Tactoids, Thixotropic Gels, Protein Crystals and Coacervates[J]. J Chem Phys,1938, 6(12): 873. [60] Chandrasekhar S, Sadashiva B K, Suresh K A. Liquid crystal of disclike molecules[J]. Pramana, 1977, 9(5):471480.[61] Harrison C, Cheng, Z D, Sethuraman S. et al. Dynamics of pattern coarsening in a twodimensional smectic system[J]. Physical Review E, 2002,66(1):011706.[62] Alexandre M, Dubois P. Polymerlayered silicate nanocomposites: preparation, properties and uses of a new class of materials[J]. Materials Science and Engineering: R: Reports,2000, 28(1/2):163. [63] Chen B. clay nanocomposites: an overview with emphasis on interaction mechanisms[J]. British ceramic transactions,2004,103(6):241249.[64] Pinnavaia T J, Lan T, Wang Z, et al. In Clayreinforced epoxy nanocomposites: synthesis, properties, and mechanism of formation[J]. ACS Publications, 1996:250261.[65] Mirua N, Yamazoe N P, Colomban P. Proton Conductors[M]. Cambridge University Press, Cambridge, 1992, 527.[66] Yang C, Srinivasan S, Arico A S, et al. Composite nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature[J]. Electrochemical and Solid State Letters,2001,4:A31A34.[67] Cooper J A, Woodhouse K E, Chippindale A M, et al. Photoelectrochemical determination of ascorbic acid using methylene blue immobilized in αZirconium Phosphate[J].Electroanal,1999, 11:12591265.[68] Curini M, Epifano F, Marcotullio M C, et al. Preparation and deprotection of 1, 1diacetates(acylals) using zirconium sulfophenyl phosphonate as catalyst[J]. Synthetic Commun, 2002,32:355362.[69] Dutta P. Towards energy storage[J]. Nature, 1992, 358: 621621.[70] Brenner H. The Oseen resistance of a particle of arbitrary shape[J]. J Fluid Mech, 1961, 11:604610.[71] Brenner H. Coupling between the translational and rotational Brownian motions of rigid particles of arbitrary shape: II. General theory[J]. Journal of colloid and interface science, 1967, 23(3):407436. [72] Cox R G. The steady motion of a particle of arbitrary shape at small Reynolds numbers[J]. J Fluid Mech,1965,23(4):625643.[73] He P, Mejia A F, Cheng Z D, et al. Hindrance function for sedimentation and creaming of colloidal disks[J]. Physical Review E,2010,81(2):26310.[74] Happel J, Brenner H. Low Reynolds number hydrodynamics: with special applications to particulate media[M]. Springer,1983, 1.[75] Khair A S, Brady J F. Microrheology of colloidal dispersions: shape matters[J]. Journal of rheology, 2008, 52(1):165196.[76] Van der Kooij F M, Philipse A P, Dhont J K G. Sedimentation and diffusion in suspensions of sterically stabilized colloidal platelets[J]. Langmuir, 2000,16(12):53175323.[77] Van der Kooij F M, Boek E S, Philipse A P. Rheology of dilute suspensions of hard platelike colloids[J]. Journal of colloid and interface science,2001,235(2):344349.[78] Mongondry P, Tassin J F, Nicolai T. Revised state diagram of Laponite dispersions[J]. Journal of colloid and interface science, 2005,283(2):397405.[79] Merrill E W. Rheology of blood[J]. Physiol Rev, 1969,49(4):86388.[80] Chien S. Red cell deformability and its relevance to blood flow[J]. Annual review of physiology, 1987,49(1):177192.[81] Dao M, Lim C T, Suresh S. Mechanics of the human red blood cell deformed by optical tweezers[J]. Journal of the Mechanics and Physics of Solids, 2003,51(1112):22592280.[82] Drochon A. Rheology of dilute suspensions of red blood cells: experimental and theoretical approaches[J]. EPJ APPLIED PHYSICS, 2003,22(2):155162. [83] Eriksson E, Scrimgeour J, Graneli A, et al. Optical manipulation and microfluidics for studies of single cell dynamics[J]. Journal of Optics A: Pure and Applied Optics, 2007,9:S113S113. [84] Wu J D, Li Y M, Lu D, et al. Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers[J]. CryoLetter, 2009, 30(2):8995.[85] PuigdeMoralesMarinkovic M, Turner K T, Butler J P, et al. Viscoelasticity of the human red blood cell[J]. American Journal of PhysiologyCell Physiology, 2007,293(2):C597C605C597C605.[86] Sleep J, Wilson D, Simmons R, et al. Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study[J]. Biophysical Journal, 1999, 77(6):30853095.[87] Svoboda K, Schmidt C F, Branton D, et al. Conformation and elasticity of the isolated red blood cell membrane skeleton[J]. Biophysical journal, 1992, 63(3):784793.[88] Abkarian M, Viallat A. Vesicles and red blood cells in shear flow[J]. Soft Matter, 2008, 4(4): 653657. [89] Higgins J M, Eddington D T, Bhatia S N, et al. Sickle cell vasoocclusion and rescue in a microfluidic device[J]. Proceedings of the National Academy of Sciences, 2007, 104(51):2049620496. [90] Jggi R D, Sandoz R, Effenhauser C S. Microfluidic depletion of red blood cells from whole blood in highaspectratio microchannels[J]. Microfluidics and Nanofluidics, 2007, 3(1):4753.[91] Lincoln B, Erickson H M, Schinkinger S, et al. Deformabilitybased flow cytometry[J]. Cytometry Part A, 2004, 59(2):203209. [92] Minerick A R, Ostafin A E, Chang H C. Electrokinetic transport of red blood cells in microcapillaries[J]. Electrophoresis, 2002, 23(14):21652173. [93] Munn L L, Dupin M M. Blood cell interactions and segregation in flow[J]. Annals of biomedical engineering, 2008, 36(4): 534544.[94] Caputo K E, Lee D, King M R, et al. Adhesive dynamics simulations of the shear threshold effect for leukocytes[J]. Biophysical journal, 2007, 92(3):787797. [95] Chang K C, Tees D F J, Hammer D A. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion[J]. Proceedings of the National Academy of Sciences, 2000, 97(21):1126211262.[96] Noguchi H, Gompper G. Fluid vesicles with viscous membranes in shear flow[J]. Physical review letters, 2004, 93(25):258102258102. [97] Pozrikidis C. Numerical simulation of the flowinduced deformation of red blood cells[J]. Annals of Biomedical Engineering, 2003, 31(10):11941205.[98] Stephanie E A G, Patricia A R, Joseph M D, et al. The effect of particle design on cellular internalization pathways [J]. USA:Natl Acad Sci,2008, 105:11613.[99] Timothy J M, Stephen W J, Joseph M D, et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles[J]. PNAS 2011,108(2): 586591.〖ZK)〗[100] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorodpolymer solar cells[J]. Science, 2002, 295(5564):24252427.[101] Ataca C, Akturk E, Ciraci S, et al. Highcapacity hydrogen storage by metalized graphene [J]. Appl Phys Lett, 2008, 93, 4:0431230431233. |
[1] | LIU Xiang-yun~1,FENG Jun-hu~2. A New Method of Temperature Measurement—— Thermochromic Liquid Crystal Method [J]. Journal of Guangdong University of Technology, 2006, 23(4): 50-53. |
|