Journal of Guangdong University of Technology ›› 2019, Vol. 36 ›› Issue (05): 38-42.doi: 10.12052/gdutxb.180177

Previous Articles     Next Articles

Existence of the Solution to the Metabolic Model of Colon Cancer Cells

Liang Xiao-zhen, Wei Xue-mei   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2018-12-24 Online:2019-08-21 Published:2019-08-06

Abstract: The metabolic model of colon cancer cells is studied. The model contains five coupled reaction diffusion equations, in which some equations involve discontinuous terms. It is proved that this problem has a global solution by using the Lp-theory for parabolic equations, the Schauder Fixed Point Theorem and approximation method.

Key words: colon cancer, global solution, existence

CLC Number: 

  • O175
[1] 杨琼, 夏良平. 肿瘤代谢共生的研究进展[J]. 临床肿瘤学杂志, 2015, 20(4):371-375 YANG Q, XIA L P. Research progress of metabolic symbiosis in cancer[J]. Chinese Clinical Oncology, 2015, 20(4):371-375
[2] PENKERT J, RIPPERGER T, SCHIECK M, et al. On metabolic reprogramming and tumor biology:A comprehensive survey of metabolism in breast cancer[J]. Oncotarget, 2016, 7(41):67626-67649
[3] LAURA P, RUBEN B, EMESTA F, et al. Targeting metabolic symbiosis to overcome resistance to antiangiogenic therapy[J]. Cell Reports, 2016, 15(6):1161-1174
[4] CHAE Y C, KIM J H. Cancer stem cell metabolism:target for cancer therapy[J]. Bmb Reports, 2018, 51(7):319-326
[5] VAN D C, KIM J W. Convergence of cancer metabolism and immunity:an overview[J]. Biomoles & Therapeutics, 2018, 26(1):4-9
[6] MENDOZA-JUEZ B, CALVO G F, VICTOR M, et al. A mathematical model for the glucoselactate metabolism of in vitro cancer cells[J]. Bulletin of Mathematical Biology, 2012, 74(5):1125-1142
[7] MCGILLEN J B, KELLY C J, GAFFNEY E A, et al. Glucose-lactate metabolic cooperation in cancer:Insights from a spatial mathematical model and implications for targeted therapy[J]. Journal of Theoretical Biology, 2014, 361(1):190-203
[8] LEE M, CHEN G T, PUTTOCK E, et al. Mathematical modeling links Wnt signaling to emergent patterns of metabolism in colon cancer[J]. Molecular Systems Biology, 2017, 13(2):912
[9] CUI S B, FRIEDMAN A. Analysis of a mathematical model of the growth of necrotic tumors[J]. Journal of Mathematical Analysis & Applications, 2001, 255(2):636-677
[10] Cui S B. Formation of necrotic cores in the growth of tumors:analytic results[J]. Acta Mathematica Scientia, 2006, 26B(4):781-796
[11] 姜礼尚, 陈亚浙. 数学物理方程讲义[M]. 北京:高等教育出版社, 2007.
[12] WEI X M. Global existence for a free boundary problem modeling the growth of necrotic tumors in the presence of inhibitors[J]. International Journal of Pure & Applied Mathematics, 2006, 28(3):321-338
[13] CUI S B. Existence of a stationary solution for the modified king-ward tumor growth model[J]. Advances in Applied Mathematics, 2006, 36(4):421-445
[14] CUI S B. Global existence of solutions for a free boundary problem modeling the growth of necrotic tumors[J]. Interfaces & Free Boundaries, 2005, 7(2):147-159
[15] WEI X M, GUO C H. Global existence for a mathematical model of the immune response to cancer[J]. Nonlinear Analysis Real World Applications, 2010, 11(5):3903-3911
[16] 陈美癸, 卫雪梅. 视网膜氧分布与脑红蛋白作用模型解的存在唯一性[J]. 广东工业大学学报, 2018, 35(5):45-50 CHEN M G, WEI X M. Existence and uniqueness of global solution for a model of retinal oxygen distribution and the role of neuroglobin[J]. Journal of Guangdong University of Technology, 2018, 35(5):45-50
[17] 卢创业, 卫雪梅. 一个视网膜血管肿瘤数学模型整体解的存在唯一性[J]. 广东工业大学学报, 2016, 33(3):70-75 LU C Y, WEI X M. Existence and uniqueness of global solution to a mathematical model of retinal vascular tumors[J]. Journal of Guangdong University of Technology, 2016, 33(3):70-75
[18] 崔尚斌. 偏微分方程现代理论引论[M]. 北京:科学出版社, 2015.
[19] LADYZENSKAJA O A, SOLONNIKOV V A, URALCEVA N N. Linear and quasilinear partial differential equations of parabolic type, translations of mathematical monographs[M]. Providence:Amer Math Soc, 1968, 23.
[1] Zhou Yun, Wei Xue-mei. A Qualitative Analysis of a Hyperbolic Tumor Growth Model with Robin Free Boundary [J]. Journal of Guangdong University of Technology, 2021, 38(02): 60-65.
[2] Chen Mei-gui, Wei Xue-mei. Existence and Uniqueness of Global Solution for a Model of Retinal Oxygen Distribution and the Role of Neuroglobin [J]. Journal of Guangdong University of Technology, 2018, 35(05): 45-50.
[3] LU Chuang-Ye,WEI Xue-Mei. Existence and Uniqueness of Global Solution to a Mathematical Model of Retinal Vascular Tumors [J]. Journal of Guangdong University of Technology, 2016, 33(03): 70-75.
[4] Lu Yu. Existence of Solutions for a Class of FourthOrder BVP [J]. Journal of Guangdong University of Technology, 2014, 31(2): 69-73.
[5] CHEN Xue-song. Solution and Perturbation Analysis of the Nonlinear Matrix Equation X+A~* F(X)A=Q [J]. Journal of Guangdong University of Technology, 2007, 24(03): 21-23.
[6] WEI Xue-mei. The Existence and Uniqueness of Solution of a Non-classical Divergence Type Heat Equations [J]. Journal of Guangdong University of Technology, 2005, 22(4): 111-116.
[7] YANG Shu-ling . The Global Attractors of a Reaction-Diffusion Equation [J]. Journal of Guangdong University of Technology, 2005, 22(3): 113-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!