Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (03): 1-8.doi: 10.12052/gdutxb.200173
Teng Shao-hua, Dong Pu, Zhang Wei
CLC Number:
[1] GAMBHIR M, GUPTA V. Recent automatic text summarization techniques: a survey [J]. Artificial Intelligence Review, 2017, 47(1): 1-66. [2] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Advances in Neural Information Processing Systems. Montereal: MIT Press, 2014: 3104-3112. [3] ELMAN J L. Finding structure in time [J]. Cognitive Science, 1990, 14(2): 179-211. [4] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780. [5] RUSH A M, CHOPRA S, WESTON J. A neural attention model for abstractive sentence summarization[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon: ACL, 2015: 379-389. [6] CHOPRA S, AULI M, RUSH A M. Abstractive sentence summarization with attentive recurrent neural networks[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego: ACL, 2016: 93-98. [7] NALLAPATI R, ZHOU B, DOS SANTOS C, et al. Abstractive text summarization using sequence-to-sequence RNNs and beyond[C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning. Berlin: CoNLL, 2016: 280-290. [8] GULCEHRE C, AHN S, NALLAPATI R, et al. Pointing the unknown words[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin: ACL, 2016: 140-149. [9] GU J, LU Z, LI H, et al. Incorporating copying mechanism in sequence-to-sequence learning[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin: ACL, 2016: 1631-1640. [10] SEE A, LIU P J, MANNING C D. Get to the point: summarization with pointer-generator networks[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver: ACL, 2017: 1073-1083. [11] LIU L, LU Y, YANG M, et al. Generative adversarial network for abstractive text summarization[C]//Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017: 8109-8110. [12] 张敏, 曾碧卿, 韩旭丽, 等. DAPC: 结合双注意力和指针覆盖的文本摘要模型[J]. 计算机工程与应用, 2020, 56(8): 149-157. ZHANG M, ZENG B Q, HAN X L, et al. DAPC: dual attention and pointer-coverage network based summarization model [J]. Computer Engineering and Applications, 2020, 56(8): 149-157. [13] 党宏社, 陶亚凡, 张选德. 基于混合注意力与强化学习的文本摘要生成[J]. 计算机工程与应用, 2020, 56(1): 185-190. DANG H S, TAO Y F, ZHANG X D. Abstractive summarization model based on mixture attention and reinforcement learning [J]. Computer Engineering and Applications, 2020, 56(1): 185-190. [14] LI J, XIONG D, TU Z, et al. Modeling source syntax for neural machine translation[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vanconver: ACL, 2017: 688-697. [15] CAO Z, WEI F, LI W, et al. Faithful to the original: fact aware neural abstractive summarization[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 4781-4791. [16] 谭有新, 滕少华. 短文本特征的组合加权方法[J]. 广东工业大学学报, 2020, 37(5): 51-61. TAN Y X, TENG S H. Combined Weighting Method for Short Text Features [J]. Journal of Guangdong University of Technology, 2020, 37(5): 51-61. [17] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[C]//Advances in Neural Information Processing Systems. Montereal: MIT Press, 2014: 1-9. [18] LIU R, HU J, WEI W, et al. Structural embedding of syntactic trees for machine comprehension[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: ACL, 2017: 815-824. [19] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016: 55-60. [20] TAN J, WAN X, XIAO J. Abstractive document summarization with a graph-based attentional neural model[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Voncouver: ACL, 2017: 1171-1181. [21] LIN C Y. Rouge: a package for automatic evaluation of summaries[C]//Text Summarization Branches Out. Barcelona: ACL, 2004: 74-81. [22] KINGMA D P, BA J A. A method for stochastic optimization[C]//Proceedings of the 3rd International Conference for Learning Representations. San Diego: ICLR, 2015: 1-15. [23] LI P, LAM W, BING L, et al. Deep recurrent generative decoder for abstractive text summarization[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: ACL, 2017: 2091-2100. |
[1] | Wu Jun-xian, He Yuan-lie. Channel Attentive Self-supervised Network for Monocular Depth Estimation [J]. Journal of Guangdong University of Technology, 2023, 40(02): 22-29. |
[2] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
[3] | Liang Guan-shu, Cao Jiang-zhong, Dai Qing-yun, Huang Yun-fei. An Unsupervised Trademark Retrieval Method Based on Attention Mechanism [J]. Journal of Guangdong University of Technology, 2020, 37(06): 41-49. |
[4] | Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17. |
[5] | Gao Jun-yan, Liu Wen-yin, Yang Zhen-guo. Object Tracking Combined with Attention and Feature Fusion [J]. Journal of Guangdong University of Technology, 2019, 36(04): 18-23. |
|