Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (02): 22-29.doi: 10.12052/gdutxb.210139
Previous Articles Next Articles
Wu Jun-xian, He Yuan-lie
CLC Number:
[1] MUR-ARTAL R, TARDóS J D. Orb-slam 2: an open-source slam system for monocular, stereo, and rgb-d cameras [J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-62. [2] GODARD C, MAC AODHA O, FIRMAN M, et al. Digging into self-supervised monocular depth estimation[C]// IEEE/CVF International Conference on Computer Vision. Seoul: IEEE. doi:10.1109/ICCV.2019.00393. [3] YIN Z, SHI J. Geonet: Unsupervised learning of dense depth, optical flow and camera pose[C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE. doi:10.1109/CVPR.2018.00212. [4] ZHOU T, BROWN M, SNAVELY N, et al. Unsupervised learning of depth and ego-motion from video[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE. doi: 10.1109/CVPR.2017.700 [5] LUO C, YANG Z, WANG P, et al. Every pixel counts++: joint learning of geometry and motion with 3d holistic understanding [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(10): 2624-41. [6] ZHAO W, LIU S, SHU Y, et al. Towards better generalization: Joint depth-pose learning without posenet[C]//IEEE Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE. doi:10.1109/CVPR42600.2020.00917. [7] PATIL V, VAN GANSBEKE W, DAI D, et al. Don’t forget the past: recurrent depth estimation from monocular video [J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6813-20. [8] GODARD C, MAC AODHA O, BROSTOW G J. Unsupervised monocular depth estimation with left-right consistency [C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE. doi: 10.1109/CVPR.2017.699. [9] DIJK T V, CROON G D. How do neural networks see depth in single images? [C]//IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South) : IEEE. doi: 10.1109/ICCV.2019.00227. [10] CAO C, LIU X, YANG Y, et al. Look and think twice: capturing top-down visual attention with feedback convolutional neural networks [C]//IEEE International Conference on Computer Vision (ICCV) . Santiago, Chile: IEEE. doi: 10.1109/ICCV.2015.338. [11] RANJAN A, JAMPANI V, BALLES L, et al. Competitive collaboration: joint unsupervised learning of depth, camera motion, optical flow and motion segmentation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Long Beach, CA, USA: IEEE. doi: 10.1109/CVPR.2019.01252. [12] JIAO J , YING C , SONG Y , et al. Look deeper into depth: monocular depth estimation with semantic booster and attention-driven loss[C]// European Conference on Computer Vision. Cham: Springer, 2018: 55-71. [13] FU H, GONG M, WANG C, et al. Deep ordinal regression network for monocular depth estimation [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE. doi: 10.1109/CVPR.2018.00214. [14] EIGEN D, PUHRSCH C, FERGUS R J A P A. Depth map prediction from a single image using a multi-scale deep network [C]//Conference on Neural Information Processing Systems. La Jolla, USA: Neural Information Processing Systems. Foundation, 2014: 2366-2374. [15] ZBONTAR J, LECUN Y J J M L R. Stereo matching by training a convolutional neural network to compare image patches [J]. IEEE Geoscience and Remote Sensing Letters, 2020(99): 1-5. [16] UMMENHOFER B, ZHOU H, UHRIG J, et al. Demon: depth and motion network for learning monocular stereo [C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE. doi: 10.1109/CVPR.2017.596. [17] GARG R, BG V K, CARNEIRO G, et al. Unsupervised cnn for single view depth estimation: geometry to the rescue[C]// European Conference on Computer Vision. Cham, Switzerland: Springer, 2016: 740-756. [18] DHARMASIRI T, SPEK A, DRUMMOND T. Eng: end-to-end neural geometry for robust depth and pose estimation using cnns[C]// Asian Conference on Computer Vision. Cham, Switzerland: Springer, 2018: 625-642. [19] ZHAN H, GARG R, WEERASEKERA C S, et al. Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE. doi: 10.1109/CVPR.2018.00043. [20] LI R, WANG S, LONG Z, et al. Undeepvo: monocular visual odometry through unsupervised deep learning [C]// IEEE International Conference on Robotics and Automation. Brisbane, QLD, Australia: IEEE. doi: 10.1109/ICRA.2018.8461251. [21] BIAN J, LI Z, WANG N, et al. Unsupervised scale-consistent depth and ego-motion learning from monocular video [J]. Advances in Neural Information Processing Systems, 2019, 32: 35-45. [22] XUE F, ZHUO G, HUANG Z, et al. Toward hierarchical self-supervised monocular absolute depth estimation for autonomous driving applications [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas: IEEE. doi: 10.1109/IROS45743.2020.9340802. [23] ZHAN H, WEERASEKERA C S, BIAN J-W, et al. Visual odometry revisited: what should be learnt?[C]// IEEE International Conference on Robotics and Automation (ICRA) . Paris, France: IEEE. doi: 10.1109/ICRA40945.2020.9197374. [24] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-12. [25] POGGI M, TOSI F, MATTOCCIA S. Learning monocular depth estimation with unsupervised trinocular assumptions [C]//International Conference on 3D Vision (3DV) . Verona, Italy: IEEE. doi: 10.1109/3DV.2018.00045. [26] PILLAI S, AMBRUŞ R, GAIDON A. Superdepth: self-supervised, super-resolved monocular depth estimation[C]//International Conference on Robotics and Automation (ICRA). Montreal, QC, Canada: IEEE. doi: 10.1109/ICRA.2019.8793621. [27] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention. Cham: Springer, 2015: 234-241. [28] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE. doi: 10.1109/CVPR.2018.00745. [29] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE. doi: 10.1109/CVPR.2016.90. [30] RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge [J]. International Journal of Computer Vision, 2015, 115(3): 211-252. |
[1] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
[2] | Teng Shao-hua, Dong Pu, Zhang Wei. An Attention Text Summarization Model Based on Syntactic Structure Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(03): 1-8. |
[3] | Liang Guan-shu, Cao Jiang-zhong, Dai Qing-yun, Huang Yun-fei. An Unsupervised Trademark Retrieval Method Based on Attention Mechanism [J]. Journal of Guangdong University of Technology, 2020, 37(06): 41-49. |
[4] | Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17. |
[5] | Gao Jun-yan, Liu Wen-yin, Yang Zhen-guo. Object Tracking Combined with Attention and Feature Fusion [J]. Journal of Guangdong University of Technology, 2019, 36(04): 18-23. |
|