Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (06): 176-184.doi: 10.12052/gdutxb.230065
• Artifical Intelligence • Previous Articles
Wu Xiao-ling, Chen Xiang-wang, Zhan Wen-tao, Ling Jie
CLC Number:
[1] 苏攀予, 黄健文. 基于知识图谱的BIM技术在工程造价领域的应用研究[J]. 广东工业大学学报, 2023, 40(2): 103-110. SU P Y, HUANG J W. The application of BIM technology in the field of engineering cost based on knowledge graph [J]. Journal of Guangdong University of Technology, 2023, 40(2): 103-110. [2] 曹智雄, 吴晓鸰, 骆晓伟, 等. 融合迁移学习与YOLOv5的安全帽佩戴检测算法[J]. 广东工业大学学报, 2023, 40(4): 67-76. CAO Z X, WU X L, LUO X W, et al. Helmet wearing detection algorithm integrating transfer learning and YOLOv5 [J]. Journal of Guangdong University of Technology, 2023, 40(4): 67-76. [3] WU S H, SHEN Y L, TAN Z Q, et al. Propose-and-refine: a two-stage set prediction network for nested named entity recognition[C]//Proceedings of the 31th International Joint Conference on Artificial Intelligence. Montreal: IJCAI, 2022: 4418-4424. [4] WANG B L, LU W. Combining spans into entities: a neural two-stage approach for recognizing discontiguous entities[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the Ninth International Joint Conference on Natural Language Processing. Hong Kong: ACL, 2019: 6217-6225. [5] LI F, LIN Z C, ZHANG M S, et al. A span-based model for joint overlapped and discontinuous named entity recognition[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Bangkok: ACL, 2021: 4814-4828. [6] GU Y J, QU X Y, WANG Z F, et al. Delving deep into regularity: a simple but effective method for Chinese named entity recognition[C]//Findings of the Association for Computational Linguistics: NAACL 2022. Seattle: ACL, 2022: 1863-1873. [7] LUAN Y, WADDEN D, HE L H, et al. A general framework for information extraction using dynamic span graphs[C]//Proceedings of the 2019 Conference of the North American Chapter of the ACL. Florence: ACL, 2019: 3036-3046. [8] YU J T, BOHNET B, POESIO M. Named entity recognition as dependency parsing[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Seattle: ACL, 2020: 6470-6476. [9] WANG Q, ZHOU Y M, RUAN T, et al. Incorporating dictionaries into deep neural networks for the Chinese clinical named entity recognition [J]. Journal of Biomedical Informatics, 2019, 92: 103133. [10] LI X Y, ZHANG H, ZHOU X H. Chinese clinical named entity recognition with variant neural structures based on BERT methods [J]. Journal of Biomedical Informatics, 2020, 107: 103422. [11] LI X Y, FENG J R, MENG Y X, et al. A unified MRC framework for named entity recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Seattle: ACL, 2020: 5849-5859. [12] PAN Y, XIN C, SUN Z Y, et al. Enhanced language representation with label knowledge for span extraction[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Punta Cana: ACL, 2021: 4623-4635. [13] HANG Y, GUI T, DAI J Q, et al. A unified generative framework for various NER subtasks[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Bangkok: ACL, 2021: 5808-5822. [14] SHEN Y L, WANG X B, TAN Z Q, et al. Parallel instance query network for named entity recognition[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Dublin: ACL, 2022: 947-961. [15] LI X N, YAN H, QIU X P, et al. FLAT: Chinese NER using flat-lattice transformer[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Seattle: ACL, 2020: 6836-6842. [16] 陈明, 刘蓉, 张晔. 基于多重注意力机制的中文医疗实体识别[J]. 计算机工程, 2023, 49(6): 314-320. CHEN M, LIU R, ZHANG Y. Chinese medical entity recognition based on multiple attention mechanism [J]. Computer Engineering, 2023, 49(6): 314-320. [17] 梁倬骞, 王东, 朱慧, 等. 基于领域本体的网络财务报告文本信息抽取研究[J]. 广东工业大学学报, 2017, 34(3): 89-95. LIANG Z Q, WANG D, ZHU H, et al. A research on text information extraction from annual report based on domain ontology [J]. Journal of Guangdong University of Technology, 2017, 34(3): 89-95. [18] LIU S Y, DUAN J W, GONG F, et al. Fusing label relations for Chinese EMR named entity recognition with machine reading comprehension[C]//18th International Symposium on Bioinformatics Research and Applications. Berlin: Springer, 2023: 41-51. [19] 赵萍, 窦全胜, 唐焕玲, 等. 融合词信息嵌入的注意力自适应命名实体识别[J]. 计算机工程与应用, 2023(8): 167-174. ZHAO P, DOU Q S, TANG H L, et al. Attention adaptive model with word information embedding for named entity recognition [J]. Computer Engineering and Applications, 2023(8): 167-174. [20] WU S, SONG X N, FENG Z H. MECT: multi-metadata embedding based cross-transformer for Chinese named entity recognition[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Bangkok: ACL, 2021: 1529-1539. [21] XUE M G, YU B W, LIU T W, et al. Porous lattice transformer encoder for Chinese NER[C]//Proceedings of the 28th International Conference on Computational Linguistics. Barcelona: ICCL, 2020: 3831-3841. [22] MA R T, PENG M L, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Seattle: ACL, 2020: 5951-5960. |
[1] | Li Zhuo-zhang, Xu Bo-yan, Cai Rui-chu, Hao Zhi-feng. Speaker-Aware Cross Attention Speaker Extraction Network [J]. Journal of Guangdong University of Technology, 2024, 41(03): 91-101. |
|