Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (06): 168-175.doi: 10.12052/gdutxb.230131
• Artifical Intelligence • Previous Articles Next Articles
Zeng An1, Chen Xu-zhou1, Ji Yu-Zhu1, Pan Dan2, Xu Xiao-Wei3
CLC Number:
[1] BHAT V, BELAVAL V, GADABANAHALLI K, et al. Illustrated imaging essay on congenital heart diseases: multim-odality approach part III: cyanotic heart diseases and complex congenital anomalies [J]. Journal of Clinical and Diagnostic Research, 2016, 10(7): TE01-TE06. [2] NESSER H J, SUGENG L, CORSI C, et al. Volumetric analysis of regional left ventricular function with real-time three-dimensional echocardiography: validation by magnetic resonance an- d clinical utility testing [J]. Heart, 2007, 93(5): 572-578. [3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks [J]. Advances in Neural Information Processing Systems, 2012, 25(2): 84-90. [4] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. New York: Springer; 2015: 234–241. [5] CHEN J, LU Y, YU Q, et al. Transunet: Transformers make strong encoders for medical image segmentation[EB/OL]. arXiv: 2102.04306(2021-02-08) [2023-09-04]. https://arxiv.org/abs/2102.04306. [6] CAO H, WANG Y, CHEN J, et al. Swin-unet: Unet-like pure transformer for medical image segmentation[C]//Proceedings of European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 205-218. [7] HATAMIZADEH A, TANG Y, NATH V, et al. Unetr: Transfor-mers for 3d medical image segmentation[C]//Proceedings of the IEEE/CVF Winter conference on Applications of Computer Vision. New Orleans: IEEE Computer Society 2022: 574-584. [8] LIU H, HU H, XU X, et al. Automatic left ventricle segmen-tation in cardiac MRI using topological stable-state thresholding and region restricted dynamic programming [J]. Academic Radiology, 2012, 19(6): 723-731. [9] ULEN J, STRANDMARK P, Kahl F. An efficient optimization framework for multi-region segmentation based on lagrangian duality [J]. IEEE Transactions on Medical Imaging, 2012, 32(2): 178-188. [10] CHEN T, BABB J, KELLMAN P, et al. Semiautomated segmentation of myocardial contours for fast strain analysis in cine displacement-encoded MRI [J]. IEEE Transactions on Medical Imaging, 2008, 27(8): 1084-1094. [11] AYED I B, CHEN H, PUNITHAKUMAR K, et al. Max-flow segmentation of the left ventricle by recovering subject-specificdistributions via a bound of the Bhatta-charyya measure [J]. Medical Image Analysis, 2012, 16(1): 87-100. [12] PETITJEAN C, DACHER J N. A review of segmentation methods in short axis cardiac MR images [J]. Medical Image Analysis, 2011, 15(2): 169-184. [13] QUEIROS S, BARBOSA D, HEYDE B, et al. Fast automatic myocardial segmentation in 4D cine CMR datasets [J]. Medical Image Analysis, 2014, 18(7): 1115-1131. [14] MITCHELL S C, BOSCH J G, LELIEVELDT B P F, et al. 3D active appearance models: segmentation of cardiac MR and ultrasound images [J]. IEEE Transactions on Medical Imaging, 2002, 21(9): 1167-1178. [15] BAI W, SHI W, LEDIG C, et al. Multiatlas segmentation withaugmented features for cardiac MR images [J]. Medical Image Analysis, 2015, 19(1): 98-109. [16] LIN X, YU L, CHENG K T, et al. The lighter the better: Rethinking Transformers in medical image segmentation through adaptive pruning [J]. IEEE Transactions on Medical Imaging, 2023, 42(8): 2325-2337. [17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of Neural Information Processing Systems, Long Beach: MIT Press; 2017: 5998-6008. [18] LIU Z, LIN Y, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Montreal: IEEE Computer Society, 2021: 10012-10022. [19] ÇICEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. New York: Springer; 2016: 424-432. [20] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: Learning where to look for the pancreas[EB/OL]. arXiv: 1804.03999(2018-04-11) [2023-09-04]. https://arxiv.org/abs/1804.03999. [21] WU Y, LIAO K, CHEN J, et al. D-former: a u-shaped dilated transformer for 3d medical image segmentation [J]. Neural Computing and Applications, 2023, 35(2): 1931-1944. [22] ZHOU H Y, GUO J, ZHANG Y, et al. nnformer: Interleaved transformer for volumetric segmentation[EB/OL]. arXiv: 2109.03201(2021-09-07) [2023-09-04]. https://arxiv.org/abs/2109.03201 [23] GUO J, ZHOU H Y, WANG L, et al. UNet-2022: exploring dynamics in non-isomorphic architecture[EB/OL]. arXiv: 2210.15566(2022-10-27) [2023-09-04]. https://arxiv.org/abs/2210.15566 [24] HUANG H, XIE S, LIN L, et al. ScaleFormer: revisiting the transformer-based backbones from a scale-wise perspective for medical image segmentation[EB/OL]. arXiv: 2207.14552(2022-01-29) [2023-09-04]. https://arxiv.org/abs/2207.14552 [25] XU X, WANG T, ZHUANG J, et al. Imagechd: A 3D computedtomography image dataset for classification of congenital heart disease[C]//Proceedings of Medical Image Computing and Computer-Assisted Intervention. New York: Springer; 2020: 77-87. [26] VAN D W S, SCHONBERGER J L, NUNEZ J, et al. scikit-image: image processing in Python [J]. PeerJ, 2014, 2: e453. |
[1] | Lai Zhi-mao, Zhang Yun, Li Dong. A Survey of Deepfake Detection Techniques Based on Transformer [J]. Journal of Guangdong University of Technology, 2023, 40(06): 155-167. |
[2] | Ye Wen-quan, Li Si, Ling Jie. Sparse-view SPECT Image Reconstruction Based on Multilevel-residual U-Net [J]. Journal of Guangdong University of Technology, 2023, 40(01): 61-67. |
[3] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
|