Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (01): 127-134.doi: 10.12052/gdutxb.220185
• Comprehensive Studies • Previous Articles
Sun You-fa, Peng Wen-yan
CLC Number:
[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities [J]. Journal of Political Economy, 1973, 81(3): 637-654. [2] MERTON R C. Option pricing when underlying stock returns are discontinuous [J]. Journal of Financial Economics, 1976, 3(1-2): 125-144. [3] BATES D S. Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options [J]. The Review of Financial Studies, 1996, 9(1): 69-107. [4] HULL J. An analysis of the bias in option pricing caused by a stochastic volatility [J]. Advances in Futures and Options Research, 1988, 3: 29-61. [5] HESTON S L. A closed-form solution for options with stochastic volatility with applications to bond and currency options [J]. The Review of Financial Studies, 1993, 6(2): 327-343. [6] GARLEANU N, PEDERSEN L H, POTESHMAN A M. Demand-based option pricing [J]. The Review of Financial Studies, 2008, 22(10): 4259-4299. [7] JONES C S, SHEMESH J. Option mispricing around nontrading periods [J]. The Journal of Finance, 2018, 73(2): 861-900. [8] HAN B. Investor sentiment and option prices [J]. The Review of Financial Studies, 2008, 21(1): 387-414. [9] SIDDIQI H. Anchoring-adjusted option pricing models [J]. Journal of Behavioral Finance, 2019, 20(2): 139-153. [10] 孙有发, 姚宇航, 邱梓杰, 等. 基于特征函数局部结构微扰法的行为期权定价研究[J]. 系统工程理论与实践, 2022, 42(12): 3247-3264. SUN Y F, YAO Y H, QIU Z J, et al. Behavioral option pricing method based on perturbation in the local structure of characteristic function [J]. Systems Engineering-Theory & Practice, 2022, 42(12): 3247-3264. [11] JANG B G, KIM C, KIM K T, et al. Psychological barriers and option pricing [J]. Journal of Futures Markets, 2015, 35(1): 52-74. [12] SONG S, WANG Y. Pricing double barrier options under a volatility regime-switching model with psychological barriers [J]. Review of Derivatives Research, 2017, 20: 255-280. [13] SONG S, WANG G, WANG Y. Pricing European options under a diffusion model with psychological barriers and leverage effect [J]. The European Journal of Finance, 2020, 26(12): 1184-1206. [14] 孙有发, 邱梓杰, 姚宇航, 等. 基于深度学习算法的行为期权定价[J]. 系统管理学报, 2021, 30(4): 697-708. SUN Y F, QIU Z J, YAO Y H, et al. Behavioral option pricing based on deep-learning algorithm [J]. Journal of Systems & Management, 2021, 30(4): 697-708. [15] RACHEV S, STOYANOV S, FABOZZI F J. Behavioral finance option pricing formulas consistent with rational dynamic asset pricing[EB/OL]. arXiv:1710. 03205(2017-10-09) [2022-11-30]. https: //doi. org/10.48550/arXiv. 1710. 03205. [16] RACHEV S, FABOZZI F J, RACHEV B, et al. Option pricing with greed and fear factor: The rational finance approach[EB/OL]. arXiv: 1709.08134(2017-09-24) [2022-11-30]. https: //doi. org /10. 48550/arXiv. 1709.08134. [17] DAI J, SHIRVANI A, FABOZZI F J. Rational finance approach to behavioral option pricing[EB/OL]. arXiv: 2005.05310(2020-05-10) [2022-11-30]. https: //doi. org/10.48550/arXiv. 2005. 05310. [18] BAELE L, DRIESSEN J, EBERT S, et al. Cumulative prospect theory, option returns, and the variance premium [J]. The Review of Financial Studies, 2019, 32(9): 3667-3723. [19] 姜继娇, 杨乃定. 基于两心理账户BPT的复合实物期权定价模型[J]. 管理科学学报, 2008, 11(1): 89-94. JIANG J J, YANG N D. Compound real option pricing model based on BPT with two mental accounts [J]. Journal of Management Sciences in China, 2008, 11(1): 89-94. [20] SHEFRIN H, STATMAN M. Behavioral aspects of the design and marketing of financial products [J]. Financial Management, 1993, 22(2): 123-134. [21] SHILLER R J. Human behavior and the efficiency of the financial system [J]. Handbook of Macroeconomics, 1999, 1: 1305-1340. [22] BREUER W, PERST A. Retail banking and behavioral financial engineering: the case of structured products [J]. Journal of Banking & Finance, 2007, 31(3): 827-844. [23] SUZUKI K, SHIMOKAWA T, MISAWA T. Agent-based approach to option pricing anomalies [J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 959-972. [24] BAR-GILL O. Pricing legal options: a behavioral perspective [J]. Review of Law & Economics, 2005, 1(2): 204-240. [25] BENARTZI S, THALER R H. Myopic loss aversion and the equity premium puzzle [J]. The Quarterly Journal of Economics, 1995, 110(1): 73-92. [26] VERSLUIS C, LEHNERT T, WOLFF C C P. A cumulative prospect theory approach to option pricing[EB/OL]. (2010-11-30) [2022-11-30]. https: //ssrn. com/ abstract=1717015. [27] KAHNEMAN D, TVERSKY A. Prospect theory: an analysis of decision under risk [J]. Econometrica, 1979, 47(2): 363-391. [28] TVERSKY A, KAHNEMAN D. Advances in prospect theory: cumulative representation of uncertainty [J]. Journal of Risk and Uncertainty, 1992, 5: 297-323. [29] THALER R H. Mental accounting and consumer choice [J]. Marketing Science, 1985, 4(3): 199-214. [30] THALER R H. Mental accounting matters [J]. Journal of Behavioral Decision Making, 1999, 12(3): 183-206. [31] PENA A, ALEMANNI B, ZANOTTI G. On the role of behavioral finance in the pricing of financial derivatives: the case of the S&P 500[EB/OL]. (2010-08-26) [2022-11-30]. https://ssrn.com/abstract=1798607. [32] NARDON M, PIANCA P. A behavioral approach to the pricing of European options[M] //Mathematical and Statistical Methods for Actuarial Sciences and Finance. Switzerland: Springer International Publishing, 2014: 219-230. [33] NARDON M, PIANCA P. European option pricing under cumulative prospect theory with constant relative sensitivity probability weighting functions [J]. Computational Management Science, 2019, 16: 249-274. [34] 吴鑫育, 李心丹, 马超群. 基于随机波动率模型的上证50ETF期权定价研究[J]. 数理统计与管理, 2019, 38(1): 115-131. WU X Y, LI X D, MA C Q. The pricing of SSE 50 ETF options based on stochastic volatility model [J]. Journal of Applied Statistics and Management, 2019, 38(1): 115-131. [35] 孙有发, 吴碧云, 郭婷, 等. 非仿射随机波动率模型下的50ETF期权定价: 基于Fourier-Cosine方法[J]. 系统工程理论与实践, 2020, 40(4): 888-904. SUN Y F, WU B Y, GUO T, et al. Fourier-cosine based option pricing for SSE 50ETF under non-affine stochastic volatility model [J]. Systems Engineering-Theory & Practice, 2020, 40(4): 888-904. [36] SUN Y F. Efficient pricing and hedging under the double Heston stochastic volatility jump-diffusion model [J]. International Journal of Computer Mathematics, 2015, 92(12): 2551-2574. [37] DAVIES G B, SATCHELL S E. The behavioural components of risk aversion [J]. Journal of Mathematical Psychology, 2007, 51(1): 1-13. [38] PRELEC D. The probability weighting function [J]. Econometrica, 1998, 66(3): 497-527. [39] GIL-PELAEZ J. Note on the inversion theorem [J]. Biometrika, 1951, 38(3-4): 481-482. [40] WITKOVSKY V. Numerical inversion of a characteristic function: an alternative tool to form the probability distribution of output quantity in linear measurement models[J]. Acta IMEKO, 2016, 5(3): 32-44. |
[1] | Chen Hai-xia, Zhong Ying-hong. An E-commerce Platform Anti-counterfeiting Strategy Research Based on Cumulative Prospect Theory and Evolutionary Game Theory [J]. Journal of Guangdong University of Technology, 2017, 34(04): 52-57. |
|