Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (02): 11-22.doi: 10.12052/gdutxb.230187
• Civil Engineering • Previous Articles Next Articles
Liang Shi-hua1, Xie Yun-peng1, Deng You-shu2
CLC Number:
[1] 钱春香, 王欣, 於孝牛. 微生物水泥研究与应用进展[J]. 材料工程, 2015, 43(08): 92-103. QIAN C X, WANG X, YU X N. Research and Application Development of Microbe Cement [J]. Journal of Materials Engineering, 2015, 43(08): 92-103. [2] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548. QIAN C X, WANG A H, WANG X. Advances of soil improvement with bio-grouting [J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548. [3] GOMEZ M G, MARTINEZ B C, DEJONG J T, et al. Field-scale bio-cementation tests to improve sands [J]. Proceedings of the Institution of Civil Engineers Ground Improvement, 2015, 168(3): 206-216. [4] 陈适, 方祥位, 刘汉龙, 等. 微生物珊瑚砂桩单桩复合地基承载特性研究[J]. 地下空间与工程学报, 2019, 15(5): 1475-1481. CHEN S, FANG X W, LIU H L, et al. Study on bearing behavior of microbial coral sand single pile composite foundation [J]. Chinese Journal of Underground Space and Engineering, 2019, 15(5): 1475-1481. [5] 章懿涛. 不同含水状态下微生物珊瑚砂桩单桩复合地基承载特性[D]. 重庆: 重庆大学, 2022. [6] 葛鑫. 不同灌浆方式对MICP固化沙漠风积沙的影响研究[D]. 南京: 东南大学, 2022. [7] 高瑜, 姚德, 韩宏伟, 等. 微生物诱导矿化风沙土的紫外侵蚀微观试验研究[J]. 岩土工程学报, 2020, 42(S1): 254-258. GAO Y, YAO D, HAN H W, et al. Micro-experiment on MICP-treated Aeolian sandy soil under ultraviolet erosion environment [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 254-258. [8] 赵志杰, 李驰, 亓越, 等. 微生物矿化覆膜联合超旱生植物的综合固沙试验[J]. 内蒙古工业大学学报(自然科学版) , 2022, 41(4): 373-378. ZHAO Z J, LI C, QI Y, et al. Comprehensive sand fixation experiment of microbial mineralized coating combined with ultra-xerophyte [J]. Journal of Inner Mongolia University of Technology, 2022, 41(4): 373-378. [9] SEIFAN M, SARMAH A K, SAMANI A K, et al. Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles [J]. Applied Microbiology and Biotechnology, 2018, 102(10): 4489-4498. [10] ALGAIFI H A, ABU BAKAR S, SAM ARM, et al. Numerical modeling for crack self-healing concrete by microbial calcium carbonate [J]. Construction and Building Materials, 2018, 189: 816-824. [11] ZHAN Q W, DONG W Y, FU C H, et al. The self-healing of marine concrete cracks based on the synergistic effect of microorganisms and inorganic minerals [J]. Journal of Building Engineering, 2022, 61: 105-210. [12] 李锺奥, 陆春华, 成亮, 等. 扩散法用于微生物矿化修复混凝土竖向裂缝的试验研究[J]. 材料导报, 2023, 37(13): 125-130. LI Z A, LU C H, CHENG L, et al. Experimental study on repairing vertical cracks of concrete by microbial mineralization with diffusion method [J]. Materials Reports, 2023, 37(13): 125-130. [13] 李沛豪, 屈文俊, 徐德强, 等. 大理石历史建筑遗产的细菌修复加固[J]. 华南理工大学学报(自然科学版) , 2009, 37(9): 36-41. LI P H, QU W J, XU D Q, et al. Remediation of historic marble architectural heritages by bacterially-induced biomineralization [J]. Journal of South China University of Technology Natural Science Edition, 2009, 37(9): 36-41. [14] RAN D, KAWASAKI S. Effective use of plant-derived urease in the field of geoenvironmental/geotechnical engineering [J]. Journal of Civil & Environmental Engineering, 2016, 6(1): 1-13. [15] YASUHARA H, NEUPANE D, HAYASHI K, et al. Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation [J]. Soils and Foundations, 2012, 52(3): 539-549. [16] DILRUKSHI R A N, NAKASHIMA K, KAWASAKI S. Soil improvement using plant-derived urease-induced calcium carbonate precipitation [J]. Soils and Foundations, 2018, 58(4): 894-910. [17] JAVADI N, KHODADADI T H, HAMDAN N, et al. EICP treatment of soil by using urease enzyme extracted from watermelon seeds[C]// Environmental Science, Orlando: Proceedings of IFCEE 2018. ASCE, 2018: 115-124. [18] HE J, GAO Y, GU Z, et al. Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand [J]. Journal of Materials in Civil Engineering, 2020, 32(5): 04020071. [19] AHENKORAH I, RAHMAN M M, KARIM M R, et al. Optimization of enzyme induced carbonate precipitation (EICP) as a ground improvement technique[C]// Geo-Congress 2020: Foundations, Soil Improvement, and Erosion. Minneapolis: [s. n. ] , 2020: 552-561. [20] 牛九格. 营养液对微生物诱导碳酸钙沉淀固化砂类土的影响研究[D]. 广州: 广东工业大学, 2019. [21] OKWADHA, GEORGE D O, LI J. Optimum conditions for microbial carbonate precipitation [J]. Chemosphere, 2010, 81(9): 1143-1148. [22] STABNIKOV V, JIAN C, IVANOV V, et al. Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand [J]. World Journal of Microbiology and Biotechnology, 2013, 29: 1453-1460. [23] ACHAL V, PAN X. Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2 [J]. Applied Biochemistry and Biotechnology, 2014, 173: 307-317. [24] KRAJEWSKA B. Urease-aided calcium carbonate mineralization for engineering [J]. Journal of Advanced Research, 2018, 13: 59-67. [25] SUN X, MIAO L, WU L, et al. Improvement of bio-cementation at low temperature based on Bacillus megaterium [J]. Applied Microbiology and Biotechnology, 2019, 103: 7191-7202. [26] JASON T D, BRINA M M, BRIAN C M, et al. Bio-mediated soil improvement [J]. Ecological Engineering, 2010, 36: 197-210. [27] 王绪民, 崔芮, 王铖. 微生物诱导CaCO3沉淀胶结砂室内试验研究进展[J]. 人民长江, 2019, 50(9): 153-160. WANG X M, CUI R, WANG C. Research progress of laboratory test on CaCO3 precipitated cemented sand induced by microorganisms [J]. Yangtze River, 2019, 50(9): 153-160. [28] 李春, 谭维佳. 微生物诱导加固砂土的动力特性及微观试验研究[J]. 人民长江, 2022, 53(12): 173-178. LI C, TAN W J. Dynamic characteristics and microscopic experimental study of microbiologically induced sand reinforcement [J]. Yangtze River, 2022, 53(12): 173-178. [29] 梁仕华, 曾伟华, 龚星, 等. 颗粒级配对微生物固化砂土力学性能的影响[J]. 人民长江, 2020, 51(2): 179-183. LIANG S H, ZENG W H, GONG X, et al. Effect of particle size on mechanical properties of microbe-solidified sand [J]. Yangtze River, 2020, 51(2): 179-183. [30] L A VAN PAASSEN. Bio-mediated ground improvement: from laboratory experiment to pilot applications[J]. Geo-Frontiers, 2011, 4099-4108. [31] FILET A E, GADRET J P, LOYGUE M, et al. Biocalcis and its applications for the consolidation of sands[C]//Grouting and Deep Mixing 2012. New Orleans: Society of Civil Engineers, 2012: 1767-1780. [32] L A VAN PAASSEN, CLAUDIA M DAZA, MARC STAAL, et al. Potential soil reinforcement by biological denitrification [J]. Ecological Engineering, 2010, 36: 168-175. [33] 刘汉龙, 马国梁, 肖杨, 等. 微生物加固岛礁地基现场试验研究[J]. 地基处理, 2019, 1(1): 26-31. LIU H L, MA G L, XIAO Y, et al. In situ experimental research on calcareous foundation stabilization using MICP technique on the reclaimed coral reef islands [J]. Chinese Ground Improvement, 2019, 1(1): 26-31. [34] 李驰, 刘世慧, 周团结, 等. 微生物矿化风沙土强度及孔隙特性的试验研究[J]. 力学与实践, 2017, 39(2): 165-171. LI C, LIU S H, ZHOU T J, et al. The strength and porosity properties of micp-treated aeolian sandy soik [J]. Mechanics in Engineering, 2017, 39(2): 165-171. [35] 李驰, 王硕, 王燕星, 等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298. LI C, WANG S, WANG Y X, et al. Field experimental study on stability of bio-mineralization crust in the desert [J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298. [36] MELTON L. How to grow cement. Nat Biotechnol 40, 286 [EB/OL](2022-02-24) [2023-10-20]. https://doi.org/10.1038/s41587-022-01264-8 [37] 友绿智库. 细菌砖, 一种活性建筑材料[EB/OL](2023-05-12) [2023-10-20]. https://ugreen.cn/newsDetail/9604. [38] 竹文坤, 牟涛, 段涛, 等. 大理石表面微生物诱导碳酸钙覆膜[J]. 非金属矿, 2014(1) : 11-13. MOU T , ZHU W K, DUAN T, et al. Coating of microbially produced calcium carbonate precipitation on marble. [J] Non-Metallic Mines, 2014(1) : 11-13. [39] ZHU W K, TAO M, ZHANG Y K, et al. Coating of microbially produced calcium carbonate onto stone materials [J]. Science China Technological Sciences, 2015, 58(2): 266-272. [40] WILLEM DE MUYNCK, STIJN LEURIDAN, DENIS VAN LOO, et al. Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation [J]. Applied and Environmental Microbiology, 2011, 77(19): 6808-6820. [41] 何建宏, 郭红仙, 谭谦, 等. 微生物诱导碳酸钙修复汉白玉石梁裂缝试验研究[J]. 文物保护与考古科学, 2019, 31(6): 46-53. HE J H, GUO H X, TAN Q, et al. Experiment research on the restoration of white marble beams using microbially-induced carbonate precipitation [J]. Sciences of Conservation and Archaeology, 2019, 31(6): 46-53. [42] 刘士雨, 俞缙, 曾伟龙, 等. 微生物诱导碳酸钙沉淀修复三合土裂缝效果研究[J]. 岩石力学与工程学报, 2020, 39(1): 191-204. LIU S Y, YU J, ZENG W L, et al. Repair effect of tabia cracks with microbially induced carbonate precipitation [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 191-204. [43] 曾伟龙. 微生物对缺陷土楼补强加固的试验研究[D]. 泉州: 华侨大学, 2020. [44] MITCHELL J K, SANTAMARINA J C. Biological considerations in geotechnical engineering [J]. Journal of Geotechnical and Geo-environmental Engineering, 2005, 131(10): 1222-1233. [45] NEMATI M, VOORDOUW G. Modification of porous media permeability, using calcium carbonate produced enzymatically in situ [J]. Enzyme and Microbial Technology, 2003, 33(5): 635-642. [46] KAVAZANJIAN E, HAMDAN N. Enzyme induced carbonate precipitation (EICP) columns for ground improvement [C] // 2015 American Society of Civil Engineers. Texas: ASCE 2015, 2015: 2252-2261. [47] OSSAI R, RIVERA L, BANDINI P. Experimental study to determine an EICP application method feasible for field treatment for soil erosion control [C] // Bio-geotechnics 2020. Minnesota: Geo-Congress 2020, 2020: 205-213. [48] DAKHANE A, DAS S, HANSEN H, et al. Crack healing in cementitious mortars using enzyme-induced carbonate precipitation: quantification based on fracture response [J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018035(1-10) . [49] KAVAZANJIAN E, ALMAJED A, HAMDAN N. Bio-inspired soil improvement using EICP soil columns and soil nails [C] // 2017 American Society of Civil Engineers. Hawaii: Grouting 2017, 2017: 13-22. [50] MARTIN K K, HAMED K T, KAVAZANJIAN E. Enzyme-induced carbonate precipitation: Scale-up of bio-cemented soil columns [C] // American Society of Civil Engineers. Minnesota: Geo-Congress 2020, 2020: 96-103. |
[1] | Liang Shi-hua, Lin Jian-peng, Niu Jiu-ge, Feng De-luan, Gong Xing, Luo Qing-zi. An Experimental Study of Oyster Shell as Calcium Source for Microbial Solidification [J]. Journal of Guangdong University of Technology, 2020, 37(01): 48-52. |
|