Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (02): 11-22.doi: 10.12052/gdutxb.230187

• Civil Engineering • Previous Articles     Next Articles

Microbially Induced Calcium Carbonate Precipitation Technique Progress and Review of Engineering Applications

Liang Shi-hua1, Xie Yun-peng1, Deng You-shu2   

  1. 1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. China Railway Tunnel Group three Co., Ltd., Guangzhou 510006, China
  • Received:2023-11-22 Online:2024-03-25 Published:2024-04-23

Abstract: Soil cementation and solidification, based on microbially induced calcium carbonate precipitation (MICP) technology, has emerged as research hotspots in geotechnical engineering and geological engineering since the 21st century. In this research, the reinforcement mechanism of MICP technology and the research status of the engineering application and the reinforcement effect and application practice are systematically described and reviewed. The results show that the strength of the site after MICP solidification shows an obvious non-uniformity, and the distribution of calcium carbonate content decreases with depth. In desert environment, the calcium carbonate coating induced by in-situ extraction of bacteria demonstrates superior strength and stability to the traditional Bacillus pasteurelli. The application of new MICP technology, such as microbial cement and microbial brick, shows promising prospects in terms of strength and durability, and new vitality into the realization of China’s double carbon goal. Addressing the factors affecting the precipitation characteristics of calcium carbonate by MICP technology, the uniformity of calcium carbonate distribution at field scale is enhanced, the durability of calcium carbonate skeleton under seasonal changes ensured, and curing efficiency under different environments improved, which should all be prioritized in future research.

Key words: microbial induced calcium carbonate precipitation, influencing factors of curing effect, engineering application

CLC Number: 

  • TU441
[1] 钱春香, 王欣, 於孝牛. 微生物水泥研究与应用进展[J]. 材料工程, 2015, 43(08): 92-103.
QIAN C X, WANG X, YU X N. Research and Application Development of Microbe Cement [J]. Journal of Materials Engineering, 2015, 43(08): 92-103.
[2] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548.
QIAN C X, WANG A H, WANG X. Advances of soil improvement with bio-grouting [J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548.
[3] GOMEZ M G, MARTINEZ B C, DEJONG J T, et al. Field-scale bio-cementation tests to improve sands [J]. Proceedings of the Institution of Civil Engineers Ground Improvement, 2015, 168(3): 206-216.
[4] 陈适, 方祥位, 刘汉龙, 等. 微生物珊瑚砂桩单桩复合地基承载特性研究[J]. 地下空间与工程学报, 2019, 15(5): 1475-1481.
CHEN S, FANG X W, LIU H L, et al. Study on bearing behavior of microbial coral sand single pile composite foundation [J]. Chinese Journal of Underground Space and Engineering, 2019, 15(5): 1475-1481.
[5] 章懿涛. 不同含水状态下微生物珊瑚砂桩单桩复合地基承载特性[D]. 重庆: 重庆大学, 2022.
[6] 葛鑫. 不同灌浆方式对MICP固化沙漠风积沙的影响研究[D]. 南京: 东南大学, 2022.
[7] 高瑜, 姚德, 韩宏伟, 等. 微生物诱导矿化风沙土的紫外侵蚀微观试验研究[J]. 岩土工程学报, 2020, 42(S1): 254-258.
GAO Y, YAO D, HAN H W, et al. Micro-experiment on MICP-treated Aeolian sandy soil under ultraviolet erosion environment [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 254-258.
[8] 赵志杰, 李驰, 亓越, 等. 微生物矿化覆膜联合超旱生植物的综合固沙试验[J]. 内蒙古工业大学学报(自然科学版) , 2022, 41(4): 373-378.
ZHAO Z J, LI C, QI Y, et al. Comprehensive sand fixation experiment of microbial mineralized coating combined with ultra-xerophyte [J]. Journal of Inner Mongolia University of Technology, 2022, 41(4): 373-378.
[9] SEIFAN M, SARMAH A K, SAMANI A K, et al. Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles [J]. Applied Microbiology and Biotechnology, 2018, 102(10): 4489-4498.
[10] ALGAIFI H A, ABU BAKAR S, SAM ARM, et al. Numerical modeling for crack self-healing concrete by microbial calcium carbonate [J]. Construction and Building Materials, 2018, 189: 816-824.
[11] ZHAN Q W, DONG W Y, FU C H, et al. The self-healing of marine concrete cracks based on the synergistic effect of microorganisms and inorganic minerals [J]. Journal of Building Engineering, 2022, 61: 105-210.
[12] 李锺奥, 陆春华, 成亮, 等. 扩散法用于微生物矿化修复混凝土竖向裂缝的试验研究[J]. 材料导报, 2023, 37(13): 125-130.
LI Z A, LU C H, CHENG L, et al. Experimental study on repairing vertical cracks of concrete by microbial mineralization with diffusion method [J]. Materials Reports, 2023, 37(13): 125-130.
[13] 李沛豪, 屈文俊, 徐德强, 等. 大理石历史建筑遗产的细菌修复加固[J]. 华南理工大学学报(自然科学版) , 2009, 37(9): 36-41.
LI P H, QU W J, XU D Q, et al. Remediation of historic marble architectural heritages by bacterially-induced biomineralization [J]. Journal of South China University of Technology Natural Science Edition, 2009, 37(9): 36-41.
[14] RAN D, KAWASAKI S. Effective use of plant-derived urease in the field of geoenvironmental/geotechnical engineering [J]. Journal of Civil & Environmental Engineering, 2016, 6(1): 1-13.
[15] YASUHARA H, NEUPANE D, HAYASHI K, et al. Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation [J]. Soils and Foundations, 2012, 52(3): 539-549.
[16] DILRUKSHI R A N, NAKASHIMA K, KAWASAKI S. Soil improvement using plant-derived urease-induced calcium carbonate precipitation [J]. Soils and Foundations, 2018, 58(4): 894-910.
[17] JAVADI N, KHODADADI T H, HAMDAN N, et al. EICP treatment of soil by using urease enzyme extracted from watermelon seeds[C]// Environmental Science, Orlando: Proceedings of IFCEE 2018. ASCE, 2018: 115-124.
[18] HE J, GAO Y, GU Z, et al. Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand [J]. Journal of Materials in Civil Engineering, 2020, 32(5): 04020071.
[19] AHENKORAH I, RAHMAN M M, KARIM M R, et al. Optimization of enzyme induced carbonate precipitation (EICP) as a ground improvement technique[C]// Geo-Congress 2020: Foundations, Soil Improvement, and Erosion. Minneapolis: [s. n. ] , 2020: 552-561.
[20] 牛九格. 营养液对微生物诱导碳酸钙沉淀固化砂类土的影响研究[D]. 广州: 广东工业大学, 2019.
[21] OKWADHA, GEORGE D O, LI J. Optimum conditions for microbial carbonate precipitation [J]. Chemosphere, 2010, 81(9): 1143-1148.
[22] STABNIKOV V, JIAN C, IVANOV V, et al. Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand [J]. World Journal of Microbiology and Biotechnology, 2013, 29: 1453-1460.
[23] ACHAL V, PAN X. Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2 [J]. Applied Biochemistry and Biotechnology, 2014, 173: 307-317.
[24] KRAJEWSKA B. Urease-aided calcium carbonate mineralization for engineering [J]. Journal of Advanced Research, 2018, 13: 59-67.
[25] SUN X, MIAO L, WU L, et al. Improvement of bio-cementation at low temperature based on Bacillus megaterium [J]. Applied Microbiology and Biotechnology, 2019, 103: 7191-7202.
[26] JASON T D, BRINA M M, BRIAN C M, et al. Bio-mediated soil improvement [J]. Ecological Engineering, 2010, 36: 197-210.
[27] 王绪民, 崔芮, 王铖. 微生物诱导CaCO3沉淀胶结砂室内试验研究进展[J]. 人民长江, 2019, 50(9): 153-160.
WANG X M, CUI R, WANG C. Research progress of laboratory test on CaCO3 precipitated cemented sand induced by microorganisms [J]. Yangtze River, 2019, 50(9): 153-160.
[28] 李春, 谭维佳. 微生物诱导加固砂土的动力特性及微观试验研究[J]. 人民长江, 2022, 53(12): 173-178.
LI C, TAN W J. Dynamic characteristics and microscopic experimental study of microbiologically induced sand reinforcement [J]. Yangtze River, 2022, 53(12): 173-178.
[29] 梁仕华, 曾伟华, 龚星, 等. 颗粒级配对微生物固化砂土力学性能的影响[J]. 人民长江, 2020, 51(2): 179-183.
LIANG S H, ZENG W H, GONG X, et al. Effect of particle size on mechanical properties of microbe-solidified sand [J]. Yangtze River, 2020, 51(2): 179-183.
[30] L A VAN PAASSEN. Bio-mediated ground improvement: from laboratory experiment to pilot applications[J]. Geo-Frontiers, 2011, 4099-4108.
[31] FILET A E, GADRET J P, LOYGUE M, et al. Biocalcis and its applications for the consolidation of sands[C]//Grouting and Deep Mixing 2012. New Orleans: Society of Civil Engineers, 2012: 1767-1780.
[32] L A VAN PAASSEN, CLAUDIA M DAZA, MARC STAAL, et al. Potential soil reinforcement by biological denitrification [J]. Ecological Engineering, 2010, 36: 168-175.
[33] 刘汉龙, 马国梁, 肖杨, 等. 微生物加固岛礁地基现场试验研究[J]. 地基处理, 2019, 1(1): 26-31.
LIU H L, MA G L, XIAO Y, et al. In situ experimental research on calcareous foundation stabilization using MICP technique on the reclaimed coral reef islands [J]. Chinese Ground Improvement, 2019, 1(1): 26-31.
[34] 李驰, 刘世慧, 周团结, 等. 微生物矿化风沙土强度及孔隙特性的试验研究[J]. 力学与实践, 2017, 39(2): 165-171.
LI C, LIU S H, ZHOU T J, et al. The strength and porosity properties of micp-treated aeolian sandy soik [J]. Mechanics in Engineering, 2017, 39(2): 165-171.
[35] 李驰, 王硕, 王燕星, 等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298.
LI C, WANG S, WANG Y X, et al. Field experimental study on stability of bio-mineralization crust in the desert [J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298.
[36] MELTON L. How to grow cement. Nat Biotechnol 40, 286 [EB/OL](2022-02-24) [2023-10-20]. https://doi.org/10.1038/s41587-022-01264-8
[37] 友绿智库. 细菌砖, 一种活性建筑材料[EB/OL](2023-05-12) [2023-10-20]. https://ugreen.cn/newsDetail/9604.
[38] 竹文坤, 牟涛, 段涛, 等. 大理石表面微生物诱导碳酸钙覆膜[J]. 非金属矿, 2014(1) : 11-13.
MOU T , ZHU W K, DUAN T, et al. Coating of microbially produced calcium carbonate precipitation on marble. [J] Non-Metallic Mines, 2014(1) : 11-13.
[39] ZHU W K, TAO M, ZHANG Y K, et al. Coating of microbially produced calcium carbonate onto stone materials [J]. Science China Technological Sciences, 2015, 58(2): 266-272.
[40] WILLEM DE MUYNCK, STIJN LEURIDAN, DENIS VAN LOO, et al. Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation [J]. Applied and Environmental Microbiology, 2011, 77(19): 6808-6820.
[41] 何建宏, 郭红仙, 谭谦, 等. 微生物诱导碳酸钙修复汉白玉石梁裂缝试验研究[J]. 文物保护与考古科学, 2019, 31(6): 46-53.
HE J H, GUO H X, TAN Q, et al. Experiment research on the restoration of white marble beams using microbially-induced carbonate precipitation [J]. Sciences of Conservation and Archaeology, 2019, 31(6): 46-53.
[42] 刘士雨, 俞缙, 曾伟龙, 等. 微生物诱导碳酸钙沉淀修复三合土裂缝效果研究[J]. 岩石力学与工程学报, 2020, 39(1): 191-204.
LIU S Y, YU J, ZENG W L, et al. Repair effect of tabia cracks with microbially induced carbonate precipitation [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 191-204.
[43] 曾伟龙. 微生物对缺陷土楼补强加固的试验研究[D]. 泉州: 华侨大学, 2020.
[44] MITCHELL J K, SANTAMARINA J C. Biological considerations in geotechnical engineering [J]. Journal of Geotechnical and Geo-environmental Engineering, 2005, 131(10): 1222-1233.
[45] NEMATI M, VOORDOUW G. Modification of porous media permeability, using calcium carbonate produced enzymatically in situ [J]. Enzyme and Microbial Technology, 2003, 33(5): 635-642.
[46] KAVAZANJIAN E, HAMDAN N. Enzyme induced carbonate precipitation (EICP) columns for ground improvement [C] // 2015 American Society of Civil Engineers. Texas: ASCE 2015, 2015: 2252-2261.
[47] OSSAI R, RIVERA L, BANDINI P. Experimental study to determine an EICP application method feasible for field treatment for soil erosion control [C] // Bio-geotechnics 2020. Minnesota: Geo-Congress 2020, 2020: 205-213.
[48] DAKHANE A, DAS S, HANSEN H, et al. Crack healing in cementitious mortars using enzyme-induced carbonate precipitation: quantification based on fracture response [J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018035(1-10) .
[49] KAVAZANJIAN E, ALMAJED A, HAMDAN N. Bio-inspired soil improvement using EICP soil columns and soil nails [C] // 2017 American Society of Civil Engineers. Hawaii: Grouting 2017, 2017: 13-22.
[50] MARTIN K K, HAMED K T, KAVAZANJIAN E. Enzyme-induced carbonate precipitation: Scale-up of bio-cemented soil columns [C] // American Society of Civil Engineers. Minnesota: Geo-Congress 2020, 2020: 96-103.
[1] Liang Shi-hua, Lin Jian-peng, Niu Jiu-ge, Feng De-luan, Gong Xing, Luo Qing-zi. An Experimental Study of Oyster Shell as Calcium Source for Microbial Solidification [J]. Journal of Guangdong University of Technology, 2020, 37(01): 48-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!