Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (06): 101-107.doi: 10.12052/gdutxb.230186
• Computer Science and Technology • Previous Articles
Xu Jin-hua, Li Si
CLC Number:
[1] ZHANG J H, LI S, KROL A, et al. Infimal convolution-based regularization for SPECT reconstruction [J]. Medical Physics, 2018, 45: 5397-5410. [2] KROL A, LI S, SHEN L X, et al. Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction [J]. Inverse Problems, 2012, 28: 115005. [3] JIANG Y, LI S, XU Y S. A higher-order polynomial method for SPECT reconstruction [J]. IEEE Transactions on Medical Imaging, 2018, 38: 1271-1283. [4] RAVISHANKAR S, YE J C, FESSLER J A. Image reconstruction: from sparsity to data-adaptive methods and machine learning [J]. Proceedings of the IEEE, 2019, 108: 86-109. [5] CHEN X, ZHOU B, XIE H, et al. DuDoSS: deep-learning-based dual-domain sinogram synthesis from sparsely sampled projections of cardiac SPECT [J]. Medical Physics, 2023, 50: 89-103. [6] LI S, PENG L, LI F, et al. Low-dose sinogram restoration enabled by conditional GAN with cross-domain regularization in SPECT imaging [J]. Mathematical Biosciences and Engineering, 2023, 20: 9728-9758. [7] 叶文权, 李斯, 凌捷. 基于多级残差U-Net的稀疏SPECT图像重建[J]. 广东工业大学学报, 2023, 40(1): 61-67. YE W Q, LI S, LING J. Sparse-view SPECT image reconstruction based on multilevel-residual U-Net [J]. Journal of Guangdong University of Technology, 2023, 40(1): 61-67. [8] DONG X, VEKHANDE S, CAO G. Sinogram interpolation for sparse-view micro-CT with deep learning neural network[C]//CHEN G H. Medical Imaging 2019: Physics of Medical Imaging. San Diego: SPIE, 2019, 10948: 692-698. [9] YUAN H, JIA J, ZHU Z. SIPID: a deep learning framework for sinogram interpolation and image denoising in low-dose CT reconstruction[C]//AMINI A. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) . Washington: IEEE, 2018: 1521-1524. [10] SHAO W, ROWE S P, DU Y. SPECTnet: a deep learning neural network for SPECT image reconstruction [J]. Annals of Translational Medicine, 2021, 9(9): 819. [11] LI Z, DEWARAJA Y K, FESSLER J A. Training end-to-end unrolled iterative neural networks for SPECT image reconstruction [J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2023, 7(4): 410-420. [12] SHAO W, POMPER M G, DU Y. A learned reconstruction network for SPECT imaging [J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 5(1): 26-34. [13] HÄGGSTRÖM I, SCHMIDTLEIN C R, CAMPANELLA G, et al. DeepPET: a deep encoder–decoder network for directly solving the PET image reconstruction inverse problem [J]. Medical Image Analysis, 2019, 54: 253-262. [14] ZHU B, LIU J Z, CAULEY S F, et al. Image reconstruction by domain-transform manifold learning [J]. Nature, 2018, 555: 487-492. [15] PRIBANIĆ I, SIMIĆ S D, TANKOVIĆ N, et al. Reduction of SPECT acquisition time using deep learning: a phantom study [J]. Physica Medica, 2023, 111: 102615. [16] 夏皓, 蔡念, 王平, 等. 基于多分辨率学习卷积神经网络的磁共振图像超分辨率重建[J]. 广东工业大学学报, 2020, 37(6): 26-31. XIA H, CAI N, WANG P, et al. Magnetic resonance image super-resolution via multi-resolution learning [J]. Journal of Guangdong University of Technology, 2020, 37(6): 26-31. [17] ZHANG Z, LIANG X, DONG X, et al. A sparse-view CT reconstruction method based on combination of DenseNet and deconvolution [J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1407-1417. [18] XIE H, THORN S, LIU Y H, et al. Deep-learning-based few-angle cardiac SPECT reconstruction using transformer [J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 7(1): 33-40. [19] SHAO W, LEUNG K, POMPER M, et al. SPECT image reconstruction by a learnt neural network [J]. Journal of Nuclear Medicine, 2020, 61: 1478. [20] GU J, YE J C. AdaIN-based tunable CycleGAN for efficient unsupervised low-dose CT denoising [J]. IEEE Transactions on Computational Imaging, 2021, 7: 73-85. [21] TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]//GUYON I. Advances in Neural Information Processing Systems 30. Long Beach: NeurIPS, 2017, 30. [22] YU L, WANG S, LI X, et al. Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation[C]//SHEN D G. Medical Image Computing and Computer Assisted Intervention–MICCAI 2019. Shenzhen: Springer, 2019(11765) : 605-613. [23] CHEPLYGINA V, DE BRUIJNE M, PLUIM J P W. Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis [J]. Medical Image Analysis, 2019, 54: 280-296. [24] ZHANG K, LI Y, LIANG J, et al. Practical blind image denoising via Swin-Conv-UNet and data synthesis[J]. Machine Intelligence Research, 2023: 1-14. [25] 甘孟坤, 曾安, 张小波. 基于Swin-Unet的主动脉再缩窄预测研究[J]. 广东工业大学学报, 2023, 40(5): 34-40. GAN M K, ZENG A, ZHANG X B. Aortic re-coarctation prediction research based on Swin-Unet [J]. Journal of Guangdong University of Technology, 2023, 40(5): 34-40. [26] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// NAVAB N. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. Munich: Springer, 2015: 234-241. [27] SEGARS W P, BOND J, FRUSH J, et al. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization [J]. Medical Physics, 2013, 40(4): 043701. |
[1] | Ye Wen-quan, Li Si, Ling Jie. Sparse-view SPECT Image Reconstruction Based on Multilevel-residual U-Net [J]. Journal of Guangdong University of Technology, 2023, 40(01): 61-67.doi: 10.12052/gdutxb.230186 |
|