Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (01): 61-67.doi: 10.12052/gdutxb.220016
Previous Articles Next Articles
Ye Wen-quan, Li Si, Ling Jie
CLC Number:
[1] O’MALLEY J, ZIESSMAN H, THRALL J. Nuclear medicine: the requisites [M]. 3rd ed. Maryland: Mosby, 2006. [2] WELLS R G. Dose reduction is good but it is image quality that matters [J]. Nucl Cardiol, 2018, 27: 238-240. [3] ZHANG J H, LI S, KROL A, et al. Infimal convolution-based regularization for SPECT reconstruction [J]. Medical Physics, 2018, 45: 5397-5410. [4] KROL A, LI S, SHEN L X, et al. Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction [J]. Inverse Problems, 2012, 28: 115005. [5] JIANG Y, LI S, XU Y S. A higher-order polynomial method for SPECT reconstruction [J]. IEEE Transactions on Medical Imaging, 2019, 38(5): 1271-1283. [6] 高俊艳, 刘文印, 杨振国. 结合注意力与特征融合的目标跟踪[J]. 广东工业大学学报, 2019, 36(4): 18-23. GAO J Y, LIU W Y, YANG Z G. Object tracking combined with attention and feature fusion [J]. Journal of Guangdong University of Technology, 2019, 36(4): 18-23. [7] ZHANG H M, DONG B. A review on deep learning in medical image reconstruction [J]. Journal of the Operations Research Society of China, 2020, 8: 311-340. [8] RAMON A J, YANG Y Y, PRETORIUS P H, et al. Improving diagnostic accuracy in low-dose SPECT myocardial perfusion imaging with convolutional denoising networks [J]. IEEE Transactions on Medical Imaging, 2020, 39: 2893-2903. [9] CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network [J]. IEEE Transactions on Medical Imaging, 2017, 36: 2524-2535. [10] ZHANG Z C, LIANG X K, DONG X, et al. A sparse-view CT reconstruction method based on combination of densenet and deconvolution [J]. IEEE Transactions on Medical Imaging, 2018, 37: 1407-1477. [11] BASTY N, GRAU V. Super resolution of cardiac cine MRI sequences using deep learning[C]// Image Analysis for Moving Organ, Breast, and Thoracic Images. Barcelona: Springer, 2018: 23-31. [12] 夏皓, 蔡念, 王平, 等. 基于多分辨率学习卷积神经网络的磁共振图像超分辨率重建[J]. 广东工业大学学报, 2020, 37(6): 26-31. XIA H, CAI N, WANG P, et al. Magnetic resonance image super-resolution via multi-resolution learning [J]. Journal of Guangdong University of Technology, 2020, 37(6): 26-31. [13] YANG Y, SUN J, LI H B, et al. Deep ADMM-Net for compressive sensing MRI[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: ACM, 2016: 10-18. [14] YANG Y, SUN J, LI H B, et al. ADMM-CSNet: a deep learning approach for image compressive sensing [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 42: 521-538. [15] ADLER J, OKTEM O. Learned primal-dual reconstruction [J]. IEEE Transactions on Medical Imaging, 2018, 37: 1322-1332. [16] HAEGGSTROEM I, SCHMIDTLEN C R, CAMPANELLA G, et al. DeepPET: a deep encoder-decoder network for directly solving the PET reconstruction inverse problem [J]. Medical Image Analysis, 2018, 54: 253-262. [17] DONG X, VEKHANDE S, CAO G. Sinogram interpolation for sparse-view micro-CT with deep learning neural network[C]//Physics of Medical Imaging. San Diego: SPIE, 2019: 1094820. [18] YUAN H Z, JIA J Z, ZHU Z X. SIPID: a deep learning framework for sinogram interpolation and image denoising in low-dose CT reconstruction[C]//2018 IEEE 15th International Symposium on Biomedical Imaging. Washington: IEEE, 2018: 1521-1524. [19] LEE H, LEE J, KIN H, et al. Deep-neural-network based sinogram synthesis for sparse-view CT image reconstruction [J]. IEEE Transactions on Radiation & Plasma Medical Sciences, 2019, 3: 109-119. [20] SHIRI I, SHEIKHZADEH P, AY M R. Deep-Fill: deep learning based sinogram domain gap filling in positron emission tomography[EB/OL]. (2019-06-16) [2021-12-20]. https://arxiv.org/abs/1906.07168v1. [21] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention. Munich: MICCAI, 2015: 234-241. [22] 黄兴, 杨瑞梅. 结合残差U-Net神经网络和DIP的PET图像降噪[J]. 光学技术, 2021, 47(2): 209-216. HUANG X, YANG R M. PET image denoising based on residual U-Net neural network and DIP [J]. Optical Technique, 2021, 47(2): 209-216. [23] 陈钧荣, 林涵阳, 陈羽中. 基于U-Net融合的保留纹理的图像去噪方法[J]. 小型微型计算机系统, 2021, 42(4): 791-797. CHEN J R, LIN H Y, CHEN Y Z. Texture-preserving image denoising method based on U-Net fusion [J]. Journal of Chinese Computer Systems, 2021, 42(4): 791-797. [24] MCCANN M T, JIN H K, UNSER M. Deep convolutional neural network for inverse problems in imaging: A Review [J]. IEEE Transactions on Image Processing, 2017, 34: 85-95. [25] HAN S Y, YOO J, YE C J. Deep residual learning for compressed sensing ct reconstruction via persistent homology analysis[EB/OL]. (2016-11-25) [2021-12-20]. https://arxiv.org/abs/1611.06391. |
[1] | Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21. |
[2] | Zhang Rui, Lyu Jun. Single-channel Speech Separation Based on Separated SI-SNR Regression Estimation and Adaptive Frequency Modulation Network [J]. Journal of Guangdong University of Technology, 2023, 40(02): 45-54. |
[3] | Qiu Jun-hao, Cheng Zhi-jian, Lin Guo-huai, Ren Hong-ru, Lu Ren-quan. Prescribed Performance Control for a Class of Nonlinear Pure-feedback Systems with Actuator Faults [J]. Journal of Guangdong University of Technology, 2023, 40(02): 55-63. |
[4] | Chen Jing-yu, Lyu Yi. Frost Detection Method of Cold Chain Refrigerating Machine Based on Spiking Neural Network [J]. Journal of Guangdong University of Technology, 2023, 40(01): 29-38. |
[5] | Peng Mei-chun, Yang Chen, Li Jun-ping, Ye Wei-bin, Huang Wen-wei. A Research on Vehicle Carbon Emission Calculating Method Based on BP Neural Network [J]. Journal of Guangdong University of Technology, 2023, 40(01): 107-112. |
[6] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
[7] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8. |
[8] | Peng Ji-guang, Xiao Han-zhen. Tracking and Obstacle Avoidance of Multi-mobile Robots Under Model Predictive Control [J]. Journal of Guangdong University of Technology, 2022, 39(05): 93-101. |
[9] | Li Yao-dong, Ren Zhi-gang, Wu Zong-ze. Deep Neural Network Based Predictive Control for Injection Molding Process [J]. Journal of Guangdong University of Technology, 2022, 39(05): 120-126,136. |
[10] | Zeng Jiang-yi, Li Zhi-sheng, Ou Yao-chun, Jin Yu-kai. PM2.5 Concentration Improving Prediction Modeling of Seasonal Index [J]. Journal of Guangdong University of Technology, 2022, 39(03): 89-94. |
[11] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8. |
[12] | Guo Xin-de, Chris Hong-qiang Ding. An AGV Path Planning Method for Discrete Manufacturing Smart Factory [J]. Journal of Guangdong University of Technology, 2021, 38(06): 70-76. |
[13] | Huang Jian-hang, Wang Zhen-you. A Research on Deep Learning Object Detection Algorithm Based on Feature Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(04): 52-58. |
[14] | Ma Shao-peng, Liang Lu, Teng Shao-hua. A Lightweight Hyperspectral Remote Sensing Image Classification Method [J]. Journal of Guangdong University of Technology, 2021, 38(03): 29-35. |
[15] | Xia Hao, Cai Nian, Wang Ping, Wang Han. Magnetic Resonance Image Super-Resolution via Multi-Resolution Learning [J]. Journal of Guangdong University of Technology, 2020, 37(06): 26-31. |
|