Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (06): 80-90.doi: 10.12052/gdutxb.230172
• Computer Science and Technology • Previous Articles
Chen Xin-yu, Zhu Jian, Chen Bing-feng, Cai Rui-chu
CLC Number:
[1] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks [J]. The Journal of Machine Learning Research, 2016, 17(1): 2096-2030. [2] 杨国庆, 郭本华, 钱淑渠, 等. 基于伪标签的无监督领域自适应分类方法[J]. 计算机应用研究, 2022, 39(5): 1357-1361. YANG G Q, GUO B H, QIAN S Q, et al. Pseudo label based unsupervised domain adaptation classification method [J]. Application Research of Computers, 2022, 39(5): 1357-1361. [3] 李晶晶, 孟利超, 张可, 等. 领域自适应研究综述[J]. 计算机工程, 2021, 47(6): 1-13. LI J J, MENG L C, ZHANG K, et al. Review of studies on domain adaptation [J]. Computer Engineering, 2021, 47(6): 1-13. [4] CHEN X K, SHAO H D, XIAO Y M, et al. Collaborative fault diagnosis of rotating machinery via dual adversarial guided unsupervised multi-domain adaptation network [J]. Mechanical Systems and Signal Processing, 2023, 198: 110427. [5] TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance [EB/OL]. arXiv: 1412.3474 (2014-12-10)[2024-03-13]. https://doi.org/10.48550/arXiv.1412.3474. [6] HOFFMAN J, TZENG E, PARK T, et al. Cycada: cycle-consistent adversarial domain adaptation [C]//International Conference on Machine Learning (ICML) . Stockholm: ACM, 2018: 1989-1998. [7] TSAI Y H, HUNG W C, SCHULTER S, et al. Learning to adapt structured output space for semantic segmentation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Salt Lake City: IEEE, 2018: 7472-7481. [8] ZHAO H, DES COMBES R T, ZHANG K, et al. On learning invariant representations for domain adaptation [C]//International Conference on Machine Learning (ICML) . California: ACM, 2019: 7523-7532. [9] 包震伟, 刘丹, 米金鹏. 弱监督与少样本学习场景下视频行为识别综述[J]. 计算机应用研究, 2023, 40(6): 1629-1635. BAO Z W, LIU D, MI J P. Review of video action recognition under weak supervision and few-shot learning [J]. Application Research of Computers, 2023, 40(6): 1629-1635. [10] SAITO K, KIM D, SCLAROFF S, et al. Semi-supervised domain adaptation via minimax entropy [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) . Seoul: IEEE, 2019: 8050-8058. [11] 潘雪玲, 李国和, 郑艺峰. 面向深度网络的小样本学习综述[J]. 计算机应用研究, 2023, 40(10): 2881-2888. PAN X L, LI G H, ZHENG Y F. Survey on few-shot learning for deep network [J]. Application Research of Computers, 2023, 40(10): 2881-2888. [12] TESHIMA T, SATO I, SUGIYAMA M. Few-shot domain adaptation by causal mechanism transfer [C]//International Conference on Machine Learning (ICML) . Vienna: ACM, 2020: 9458-9469. [13] 王月, 杨春宇, 郭鑫平, 等. 深度子领域迁移学习: 一种细粒度主动迁移视角[J]. 南京理工大学学报, 2023, 47(1): 90-102. WANG Y, YANG C Y, GUO X P, et al. Deep subdomain transfer learning: a fine-grained active transfer perspective [J]. Journal of Nanjing University of Science And Technology, 2023, 47(1): 90-102. [14] WANG D, SHANG Y. A new active labeling method for deep learning [C]//International Joint Conference on Neural Networks (IJCNN) . Beijing: IEEE, 2014: 112-119. [15] LEWIS D D, CATLETT J. Heterogeneous uncertainty sampling for supervised learning [C]//Machine learning proceedings 1994. New Jersey: Morgan Kaufmann, 1994: 148-156. [16] GAL Y, ISLAM R, GHAHRAMANI Z. Deep bayesian active learning with image data [C]//International Conference on Machine Learning (ICML) . Sydney: ACM, 2017: 1183-1192. [17] SENER O, SAVARESE S. Active learning for convolutional neural networks: a core-set approach [EB/OL]. arXiv: 1708.00489 (2018-06-01)[2024-03-13]. https://doi.org/10.48550/arXiv.1708.00489. [18] ZHDANOV F. Diverse mini-batch active learning [EB/OL]. arXiv: 1901.05954 (2019-01-17)[2024-03-13]. https://doi.org/10.48550/arXiv.1901.05954. [19] ASH J T, ZHANG C, KRISHNAMURTHY A, et al. Deep batch active learning by diverse, uncertain gradient lower bounds [EB/OL]. arXiv: 1906.03671 (2020-02-24)[2024-03-13]. https://doi.org/10.48550/arXiv.1906.03671. [20] SHUI C J, ZHOU F, GAGNE C, et al. Deep active learning: unified and principled method for query and training [C]//International Conference on Artificial Intelligence and Statistics (ICAIS) . Hohhot: LNCS, 2020: 1308-1318. [21] RAI P, SAHA A, DAUME III H, et al. Domain adaptation meets active learning [C]//Proceedings of the NAACL HLT 2010 Workshop on Active Learning for Natural Language Processing. California: ACL, 2010: 27-32. [22] PRABHU V, CHANDRASEKARAN A, SAENKO K, et al. Active domain adaptation via clustering uncertainty-weighted embeddings [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) . Montreal: IEEE, 2021: 8505-8514. [23] FU B, CAO Z J, WANG J M, et al. Transferable query selection for active domain adaptation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Kuala Lumpur: IEEE, 2021: 7272-7281. [24] XIE B H, YUAN L H, LI S, et al. Active learning for domain adaptation: an energy-based approach [C]//Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver: AAAI, 2022: 8708-8716. [25] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]//Advances in Neural Information Processing Systems (NIPS) . Montreal: MIT Press, 2014. [26] VENKATESWARA H, EUSEBIO J, CHAKRABORTY S, et al. Deep hashing network for unsupervised domain adaptation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Hawaii: IEEE, 2017: 5018-5027. [27] SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains [C]//European Conference on Computer Vision (ECCV) . Hersonissos: Springer, 2010, 213-226. [28] BARBARA C. The imageclef-da challenge 2014 [EB/OL]. (2014-09-18)[2024-03-13]. https://www.imageclef.org/2014/. [29] KRIZHEVSKY A, HINTON G. Learning multiple layers of features fromtiny images[EB/OL]. (2009-04-08) [2024-03-13]. http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR. [30] SU J C, TSAI Y H, SOHN K, et al. Active adversarial domain adaptation [C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) . Colorado: IEEE, 2020: 739-748. [31] ZHOU F, SHUI C J, YANG S C, et al. Discriminative active learning for domain adaptation [J]. Knowledge Based Systems, 2021, 222: 106986. [32] DE MATHELIN A, DEHEEGER F, MOUGEOT M, et al. Discrepancy-based active learning for domain adaptation [EB/OL]. arXiv: 2103.03757 (2022-09-14)[2024-03-13]. https://doi.org/10.48550/arXiv.2103.03757. [33] RANGWANI H, JAIN A, AITHAL S K, et al. S3VAADA: submodular subset selection for virtual adversarial active domain adaptation [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) . Montreal: IEEE, 2021: 7516-7525. [34] HAN K, KIM Y, HAN D, et al. TL-ADA: transferable Loss-based active domain adaptation [J]. Neural Networks, 2023, 161: 670-681. [35] JOSHI A J, PORIKLI F, PAPANIKOLOPOULOS N. Multi-class active learning for image classification [C]//2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Miami: IEEE, 2009: 2372-2379. [36] AGARWAL S, ARORA H, ANAND S, et al. Contextual diversity for active learning [C]//European Conference on Computer Vision (ECCV) . Glasgow: Springer, 2020: 137-153. [37] VAN DER MAATEN L, HINTON G. Visualizing data using tsne [J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605. |
[1] | Jiang Hai-yan, Zhang Tian-xing, Huang Xiao-tong, Yuan yuan, Lu Jian. Restoration Strategies and Biodiversity Improvement of Dike-pond Agricultural Ecosystem in the Pearl River Delta —Taking Foshan Liyusha Wanmu Park as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(01): 107-114.doi: 10.12052/gdutxb.230172 |
|