Journal of Guangdong University of Technology ›› 2019, Vol. 36 ›› Issue (05): 71-85.doi: 10.12052/gdutxb.180190
Previous Articles Next Articles
Jiang Yan1,2, Huang Jin1,2, Luo Wen1
CLC Number:
[1] WATANABE M, THOMAS M L, ZHANG S, et al. Application of ionic liquids to energy storage and conversion materials and devices[J]. Chemical Reviews, 2017, 117(10):7190-7239 [2] COOK T R, DOGUTAN D K, REECE S Y, et al. Solar energy supply and storage for the legacy and nonlegacy worlds[J]. Chemical Reviews, 2010, 110(11):6474-6502 [3] CHENG F, WEN R, HUANG Z, et al. Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage[J]. Applied Thermal Engineering, 2017, 120:107-114 [4] WANG H, HUANG J, SONG M, et al. Simulation and experimental study on the optical performance of a fixed-focus fresnel lens solar concentrator using polar-axis tracking[J]. Energies, 2018, 11(4):887-1-16 [5] BÖRJESOON K, LENNARTSON A, Moth-Poulsen K. Efficiency limit of molecular solar thermal energy collecting devices[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(6):585-590 [6] EELLABBAN O, ABU-RUB H, BLAABJERG F. Renewable energy resources:Current status, future prospects and their enabling technology[J]. Renewable & Sustainable Energy Reviews, 2014, 39:748-764 [7] MAMANI V, GUTIERREZ A, USHAK S. Development of low-cost inorganic salt hydrate as a thermochemical energy storage material[J]. Solar Energy Materials and Solar Cells, 2018, 176:346-356 [8] Wang F, Fang X, Zhang Z. Preparation of phase change material emulsions with good stability and little supercooling by using a mixed polymeric emulsifier for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 176:381-390 [9] DREOS A, BÖRJESSON K, WANG Z, et al. Exploring the potential of a hybrid device combining solar water heating and molecular solar thermal energy storage[J]. Energy & Environmental Science, 2017, 10(3):728-734 [10] LENNARTSON A, ROFFEY A, MOTH-POULSEN K. Designing photoswitches for molecular solar thermal energy storage[J]. Tetrahedron Letters, 2015, 56(12):1457-1465 [11] CAIA V, CUM G, GALLO R, et al. A high enthalpy value in thermal isomerization of photosynthesized cis-9-styrylacridines[J]. Tetrahedron letters, 1983, 24(36):3903-3904 [12] KANAI Y, SRINIVASAN V, MEIER S K, et al. Mechanism of thermal reversal of the (fulvalene) tetracarbonyldiruthenium photoisomerization:toward molecular solar-thermal energy storage[J]. Angewandte Chemie International Edition, 2010, 49(47):8926-8929 [13] DURGUN E, GROSSMAN J C. Photoswitchable molecular rings for solar-thermal energy storage[J]. Journal of Physical Chemistry Letters, 2013, 4(6):854-860 [14] CHO E N. Understanding and engineering azobenzene for thermal energy storage[D]. Cambridge:Massachusetts Institute of Technology, 2017. [15] 洪立水, 黄金, 胡艳鑫, 等. 基于太阳能储能材料的偶氮苯化合物性能研究[J]. 太阳能学报, 2017, 38(7):1761-1766 HONG L S, HUANG J, HU Y X, et al. Performance study of azobenzene compounds based on material for solar energy storage[J]. Acta Energiae Solaris Sinica, 2017, 38(7):1761-1766 [16] FENG W, LUO W, FENG Y Y. Photo-responsive carbon nanomaterials functionalized by azobenzene moieties:structures, properties and application[J]. Nanoscale, 2012, 4(20):6118-6134 [17] 李世佩. 双枝偶氮苯-石墨烯杂化材料的合成及光储热性能研究[D]. 天津:天津大学, 2016. [18] 李嫚. 光储热偶氮苯-石墨烯的分子模型及VASP理论计算[D]. 天津:天津大学, 2015. [19] 赵肖泽. 双枝偶氮苯/石墨烯杂化材料光热存储的研究[D]. 天津:天津大学, 2016. [20] 罗文. 偶氮苯-石墨烯杂化材料的合成及其氢键调控分子储能研究[D]. 天津:天津大学, 2015. [21] 曹晨, 罗文, 冯奕钰, 等. 分子级光储热材料的研究进展[J]. 中国科学:技术科学, 2016, 7:002 CHAO C, LUO W, FENG Y Y, et al. Advanced research in molecular solar thermal storage materials[J]. Scientia Sinica Technologica, 2016, 7:002 [22] KNOLL H. Photoisomerism of azobenzenes[J]. Chem Inform, 2004, 35(17):1-16. [23] RAU H, LUEDDECKE E. On the rotation-inversion controversy on photoisomerization of azobenzenes. experimental proof of inversion[J]. Journal of the American Chemical Society, 1982, 104(6):1616-1620 [24] 王罗新, 王晓工. 偶氮苯顺反异构化机理研究进展[J]. 化学通报, 2008, 71(4):243-248 WANG L X, WANG X G. Progress of the trans-cis isomerization mechanism of azobenzene[J]. Chemistry Bulletin, 2008, 71(4):243-248 [25] RAU H. In photochromism:molecules and systems[M]. H Duerrand H. ed. Bouas-Laurent. Amsterdam:Elsevier, 2003:165-192. [26] DUGAVE C, DEMANGE L. Cis-trans isomerization of organic molecules and biomolecules:implications and applications[J]. Chemical Reviews, 2003, 103(7):2475-2532 [27] CHOI B Y, KAHNG S J, KIM S, et al. Conformational molecular switch of the azobenzene molecule:a scanning tunneling microscopy study[J]. Physical Review Letters, 2006, 96(15):156106 [28] KUCHARSKI T J, TIAN Y, AKBULATOV S, et al. Chemical solutions for the closed-cycle storage of solar energy[J]. Energy & Environmental Science, 2011, 4(11):4449-4472 [29] WUA, TALHAM D R. Photoisomerization of azobenzene chromophores in organic/inorganic zirconium phosphonate thin films prepared using a combined langmuir-blodgett and self-assembled monolayer deposition[J]. Langmuir, 2000, 16(19):7449-7456. [30] YANG Z, CHEN H, CAO L, et al. Nanoscale azo pigment immobilized on carbon nanotubes via liquid phase reprecipitation approach[J]. Materials Letters, 2004, 58(17-18):2238-2242 [31] OOLIVEIRA J O N, DOS SANTOS J D S, BALOGH D T, et al. Optical storage and surface-relief gratings in azobenzene-containing nanostructured films[J]. Advances in Colloid and Interface Science, 2005, 116(1-3):179-192 [32] CACCIARINI M, SKOV A B, JEVRIC M, et al. Towards solar energy storage in the photochromic dihydroazulene-vinylheptafulvene system[J]. Chemistry-A European Journal, 2015, 21(20):7454-7461 [33] KOBAYASHI T, DEGENKOLB E O, RENTZEPIS P M. Picosecond spectroscopy of 1-phenylazo-2 hydroxynaphthalene[J]. The Journal of Physical Chemistry, 1979, 83(19):2431-2434 [34] LEDNEV I K, YE T, HESTER R E, et al. Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene in solution[J]. The Journal of Physical Chemistry, 1996, 100(32):13338-13341 [35] SADOVSKI O, BEHARRY A A, ZHANG F, et al. Spectral tuning of azobenzene photoswitches for biological applications[J]. Angewandte Chemie International Edition, 2009, 48(8):1484-1486 [36] BASTIANELLI C, CAIA V, CUM G, et al. Thermal isomerization of photochemically synthesized (Z)-9-styrylacridines. An unusually high enthalpy of Z→E conversion for stilbene-like compounds[J]. Journal of the Chemical Society, Perkin Transactions 2, 1991(5):679-683 [37] HUANG J, JIANG Y, WANG J, et al. A high energy, reusable and daily-utilization molecular solar thermal conversion and storage material based on azobenzene/multi-walled carbon nanotubes hybrid[J]. Thermochimica Acta, 2017, 657:163-169 [38] BEHARRY A A, SADOVSKI O, WOOLEY G A. Azobenzene photoswitching without ultraviolet light[J]. Journal of the American Chemical Society, 2011, 133(49):19684-19687 [39] SAMANTA S, MC CORMICK T M, SCHMIDT S K, et al. Robust visible light photoswitching with ortho-thiol substituted azobenzenes[J]. Chemical Communications, 2013, 49(87):10314-10316 [40] BLÉGER D, SCHWARZ J, BROUWER A M, et al. o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light[J]. Journal of the American Chemical Society, 2012, 134(51):20597-20600 [41] BLÉGER D, DOKIC J, PRTERS M V, et al. Electronic decoupling approach to quantitative photoswitching in linear multiazobenzene architectures[J]. The Journal of Physical Chemistry B, 2011, 115(33):9930-9940 [42] FENG W, LI S, LI M., et al An energy-dense and thermal-stable bis-azobenzene/hybrid templated assembly for solar thermal fuel[J]. Journal of Materials Chemistry A, 2016, 4(21):8020-8028 [43] HARTLEY G S. The cis-form of azobenzene[J]. Nature, 1937, 140(3537):281 [44] HARTLEY G S. 113. The cis-form of azobenzene and the velocity of the thermal cis→trans -conversion of azobenzene and some derivatives[J]. Journal of the Chemical Society, 1938:633-642 [45] CORRUCCINI R J, GILBERT E C. The heat of combustion of cis-and trans-azobenzene[J]. Journal of the American Chemical Society, 1939, 61(10):2925-2927 [46] ADAMSON A W, VOGLER A, KUNKELY H, et al. Photocalorimetry. enthalpies of photolysis of trans-azobenzene, ferrioxalate and cobaltioxalate ions, chromium hexacarbonyl, and dirhenium decarbonyl[J]. Journal of the American Chemical Society, 1978, 100(4):1298-1300 [47] OLMSTED Ⅲ J, LAWRENCE J, YEE G G. Photochemical storage potential of azobenzenes[J]. Solar Energy, 1983, 30(3):271-274 [48] TAODA H, HAYAKAWA K, KAWASE K, et al. Yamakita. Photochemical conversion and storage of solar energy by azobenzene[J]. Journal of Chemical Engineering of Japan, 1987, 20(3):265-270 [49] POZHIDAEVA N, CORMIER M E, CHAUDHARI A, et al. Reversible photocontrol of peptide helix content:adjusting thermal stability of the cis state[J]. Bioconjugate Chemistry, 2004, 15(6):1297-1303 [50] BRODE W R, GOULD J H, WYMAN G M. The relation between the absorption spectra and the chemical constitution of dyes. xxv. phototropism and cis-trans isomerism in aromatic azo compounds[J]. Journal of the American Chemical Society, 1952, 74(18):4641-4646 [51] GABOR G, FISCHER E. Spectra and cis-trans isomerism in highly dipolar derivatives of azobenzene[J]. The Journal of Chemical Physics, 1971, 75(4):581-583 [52] BEHARRY A A, WOOLLEY G A. Azobenzene photoswitches for biomolecules[J]. Chemical Society Reviews, 2011, 40(8):4422-4437 [53] DOKIC J, GOTHE M, WIRTH J, et al. Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives:substituent effects, solvent effects, and comparison to experimental data[J]. The Journal of Physical Chemistry A, 2009, 113(24):6763-6773 [54] BANDARA H M D, BURDETTE S C. Photoisomerization in different classes of azobenzene[J]. Chemical Society Reviews, 2012, 41(5):1809-1825 [55] SIEWERTSEN R, NEUMANN H, BUCHHEIM-STEHN B, et al. Highly efficient reversible Z-E photoisomerization of a bridged azobenzene with visible light through resolved S1(nπ*) absorption bands[J]. Journal of the American Chemical Society, 2009, 131(43):15594-15595 [56] JOSHI D K, MITCHELL M J, BRUCE D, et al. Synthesis of cyclic azobenzene analogues[J]. Tetrahedron, 2012, 68(41):8670-8676 [57] HAMMERICH M, SCHÜTT C, STÄHLER C, et al. Heterodiazocines:Synthesis and photochromic properties, trans to cis switching within the bio-optical window[J]. Journal of the American Chemical Society, 2016, 138(40):13111-13114 [58] HAN G G D, LI H, GROSSMAN J C. Optically-controlled long-term storage and release of thermal energy in phase-change materials[J]. Nature Communications, 2017, 8(1):1446 [59] HAN G G D, DERU J H, CHO E N, et al. Optically-regulated thermal energy storage in diverse organic phase-change materials[J]. Chemical Communications, 2018, 54(76):10722-10725 [60] BAHRENBURG J, SIEVERS C M, SCHÖNBORN J B, et al. Photochemical properties of multi-azobenzene compounds[J]. Photochemical & Photobiological Sciences, 2013, 12(3):511-518 [61] NISHIOKA H, LIANG X, KASHIDA H, et al. 2',6'-Dimethylazobenzene as an efficient and thermo-stable photo-regulator for the photoregulation of DNA hybridization[J]. Chemical Communications, 2007(42):4354-4356 [62] NISHIOKA H, LIANG X, ASANUMA H. Effect of the ortho modification of azobenzene on the photoregulatory efficiency of DNA hybridization and the thermal stability of its cis form[J]. Chemistry-A European Journal, 2010, 16(7):2054-2062 [63] HAN M, ISHIKAWA D, HONDA T, et al. Light-driven molecular switches in azobenzene self-assembled monolayers:effect of molecular structure on reversible photoisomerization and stable cis state[J]. Chemical Communications, 2010, 46(20):3598-3600 [64] BLÉGER D, HECHT S. Visible-light-activated molecular switches[J]. Angewandte Chemie International Edition, 2015, 54(39):11338-11349 [65] GARCIA-AMORÓS J, BUČINSKAS A, REIG M, et al. Fastest molecular photochromic switches based on nanosecond isomerizing benzothiazolium azophenolic salts[J]. Journal of Materials Chemistry C, 2014, 2(3):474-480 [66] MOUROT A, KIENZLER M A, BANGHART M R, et al. Tuning photochromic ion channel blockers[J]. ACS Chemical Neuroscience, 2011, 2(9):536-543 [67] HOSONO N, YOSHIKAWA M, FURUKAWA H, et al. Photoinduced deformation of rigid azobenzene-containing polymer networks[J]. Macromolecules, 2013, 46(3):1017-1026 [68] NATANSOHN A, ROCHON P. Photoinduced motions in azo-containing polymers[J]. Chemical Reviews, 2002, 102(11):4139-4176 [69] GOULET-HANSSENS A, CORKERY T C, PRⅡMAGI A, et al. Effect of head group size on the photoswitching applications of azobenzene Disperse Red 1 analogues[J]. Journal of Materials Chemistry C, 2014, 2(36):7505-7512 [70] SAMANTA S, BEHARRY A A, SADOVSKI O, et al. Photoswitching azo compounds in vivo with red light[J]. Journal of the American Chemical Society, 2013, 135(26):9777-9784 [71] RULLO A, REINER A, REITER A, et al. Long wavelength optical control of glutamate receptor ion channels using a tetra-ortho-substituted azobenzene derivative[J]. Chemical Communications, 2014, 50(93):14613-14615 [72] KNIE C, UTECHT M, ZHAO F, et al. Ortho-fluoroazobenzenes:visible light switches with very long-lived Z isomers[J]. Chemistry-A European Journal, 2014, 20(50):16492-16501 [73] YANG Y, HUGHES R P, APRAHAMIAN I. Near-infrared light activated azo-BF2 switches[J]. Journal of the American Chemical Society, 2014, 136(38):13190-13193 [74] YANG Y, SU X., CARROLL C N, et al Aggregation-induced emission in BF2-hydrazone (BODIHY) complexes[J]. Chemical Science, 2012, 3(2):610-613 [75] WANG Y P, ZHANG Z X, XIE M, et al. Theoretical study on thermal cis-to-trans isomerization of BF2-coordinated azo compounds of the para-substitution with electron donating groups[J]. Dyes and Pigments, 2016, 129:100-108 [76] FENG Y Y, LIU H P, LUO W, et al. Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage[J]. Scientific Reports, 2013, 3:3260 [77] LUO W, FENG Y Y, CAO C, et al. A high energy density azobenzene/graphene hybrid:a nano-templated platform for solar thermal storage[J]. Journal of Materials Chemistry A, 2015, 3(22):11787-11795 [78] LUO W, FENG Y Y, QIN C Q, et al. High-energy, stable and recycled molecular solar thermal storage materials using azo/graphene hybrids by optimizing hydrogen bonds[J]. Nanoscale, 2015, 7(39):16214-16221 [79] ZHAO X, FENG Y, QIN C Q, et al. Controlling heat release from a close-packed bisazobenzene-reduced-graphene-oxide assembly film for high-energy solid-state photothermal fuels[J]. ChemSusChem, 2017, 10(7):1395-1404 [80] YANG W, FENG Y, SI Q, et al. Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output[J]. Journal of Materials Chemistry A, 2019, 7(1):97-106 [81] MASUTANI K, MORIKAWA M, KIMIZUKA N. A liquid azobenzene derivative as a solvent-free solar thermal fuel[J]. Chemical Communications, 2014, 50(99):15803-15806 [82] CHO E N, ZHITOMIRSKY D, HAN G G D, et al. Molecularly engineered azobenzene derivatives for high energy density solid-state solar thermal fuels[J]. ACS Applied Materials & Interfaces, 2017, 9(10):8679-8687 [83] HAN G D, PARK S S, LIU Y, et al. Photon energy storage materials with high energy densities based on diacetylene-azobenzene derivatives[J]. Journal of Materials Chemistry A, 2016, 4(41):16157-16165 [84] JEONG S P, RENNA L A, BOYLE C J, et al. High energy density in azobenzene-based materials for photo-thermal batteries via controlled polymer architecture and polymer-solvent interactions[J]. Scientific Reports, 2017, 7(1):17773 [85] ISHIBA K, MORIKAWA M, CHIKARA C, et al. Photoliquefiable ionic crystals:a phase crossover approach for photon energy storage materials with functional multiplicity[J]. Angewandte Chemie International Edition, 2015, 54(5):1532-1536 [86] ZHITOMIRSKY D, CHO E, GROSSMAN J C. Solid-state solar thermal fuels for heat release applications[J]. Advanced Energy Materials, 2016, 6(6):1502006 [87] ZHITOMIRSKY D, GROSSMAN JC. Conformal electroplating of azobenzene-based solar thermal fuels onto large-area and fiber geometries[J]. ACS Applied Materials & Interfaces, 2016, 8(39):26319-26325 [88] WEIS P, WANG D, WU S. Visible-light-responsive azopolymers with inhibited π-π stacking enable fully reversible photopatterning[J]. Macromolecules, 2016, 49(17):6368-6373 [89] SAYDJARI A K, WEIS P, WU S. Spanning the solar spectrum:azopolymer solar thermal fuels for simultaneous UV and visible light storage[J]. Advanced Energy Materials, 2017, 7(3):1601622 [90] KOLPAK A M, GROSSMAN J C. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels[J]. Nano Letters, 2011, 11(8):3156-3162 [91] KOLPAK A M, GROSSMAN J C. Hybrid chromophore/template nanostructures:a customizable platform material for solar energy storage and conversion[J]. Journal of Chemical Physics, 2013, 138(3):034303 [92] KUCHARSKI T J, FERRALIS N, KOLPAK A M, et al. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels[J]. Nature Chemistry, 2014, 6(5):441-447 [93] JIANG Y, HUANG J, FENG W, et al. Molecular regulation of nano-structured solid-state AZO-SWCNTs assembly film for the high-energy and short-term solar thermal storage[J]. Solar Energy Materials and Solar Cells, 2019, 193:198-205 [94] LI M, FENG Y Y, LIU E Z, et al. Azobenzene/graphene hybrid for high-density solar thermal storage by optimizing molecular structure[J]. Science China-Technological Sciences, 2016, 59(9):1383-1390 |
[1] | Yu Jian, Chen Ze-hong, Peng Xin-wen. Application of Biomass-based Energy Storage Materials in Flexible Devices [J]. Journal of Guangdong University of Technology, 2022, 39(01): 41-49. |
[2] | Zou Shi-xuan,Li Feng,Zhang Ren-yuan. Corrosion of Silicon Carbide and Silicon Nitride in Molten Aluminum Alloy [J]. Journal of Guangdong University of Technology, 2013, 30(1): 106-109. |
[3] | ZHONG Hao-Yuan, ZHANG Ren-Yuan, SHI Bao-Xin, LI Shi-Dong, LIU Liang-De. A Study of Heat Transfer Characteristics of Thermal Diode in Solar W ater Heater with Thermal Storage [J]. Journal of Guangdong University of Technology, 2010, 27(1): 42-46. |
[4] | Xia Xiao-zhou1,2,Zhang Qing2,Li Li-juan1. Theoretical Research on the Influence of the Air Content on the Friction Coefficient of Concrete [J]. Journal of Guangdong University of Technology, 2009, 26(3): 20-23. |
|