Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (02): 105-119.doi: 10.12052/gdutxb.210125

Previous Articles     Next Articles

Research Status and Development Trend of Bio-asphalt

Sun Xiao-long1, Zhang Yi-kang1, Yuan Jun-shen1, Cang Zhi2, Yin Ying-mei1, Liu Zhi-sheng3,4   

  1. 1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Datong North Expressway Branch, Shanxi Transportation Holding Group Co., Ltd., Datong 037300, China;
    3. Department of Science and Technology, Shanxi Transportation Holding Group Co., Ltd., Taiyuan 030002, China;
    4. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China
  • Received:2021-08-22 Online:2022-03-10 Published:2022-04-02

Abstract: In order to reduce the adverse effects of large-scale use of fossil fuels on the environment, make full use of renewable resources, and improve the defects in the road performance of traditional petroleum asphalt, a kind of biomass asphalt with the advantages of renewable, large reserves and green environmental protection was introduced. In recent years, most of the domestic and foreign research focused on the preparation process and modification effect of bioasphalt. However, the reaction mechanism between biomass modifier and commonly used modifier in composite modification is still less, and the modification research and evaluation method of matrix asphalt need to be further explored. Therefore, the preparation process of biomass modified materials and bio-asphalt is reviewed, its modification effect analyzed, the modification effect of existing commonly used modifiers and biomass composite on asphalt compared, and finally the content of this paper summarized and condensed, the existing preparation process and modification effect summarized and evaluated, the problems existing in the research of bio-asphalt put forward, and the development trend of bio-asphalt prospected.

Key words: modified asphalt, biomass, environmental protection

CLC Number: 

  • U414
[1] 汪海年, 高俊锋, 尤占平, 等. 路用生物沥青研究进展[J]. 武汉理工大学学报, 2014, 36(7): 55-60.
WANG H N, GAO J F, YOU Z P, et al. Advances in bio-binder application on road pavement [J]. Journal of Wuhan University of Technology, 2014, 36(7): 55-60.
[2] 马峰, 任欣, 傅珍. 生物沥青及其路用性能研究综述[J]. 公路工程, 2015, 40(1): 63-67.
MA F, REN X, FU Z. Review on bio-asphalt and its road performance [J]. Highway Engineering, 2015, 40(1): 63-67.
[3] 曹雪娟, 刘攀, 唐伯明. 生物沥青研究进展综述[J]. 材料导报, 2015, 029(17): 95-100.
CAO X J, LIU P, TANG B M. Review of research progress in bio-asphalt [J]. Materials Review, 2015, 029(17): 95-100.
[4] ZHANG B B, MA Y, GENG W, et al. Assessment of rape straw resources for biomass energy production in China [J]. Renewable Energy Resources, 2017, 35(1): 126-134.
[5] 丁湛, 岳向京, 张静, 等. 秸秆液化制备生物沥青工艺及性能研究[J]. 应用化工, 2021, 50(7): 1776-1779.
DING Z, YUE X J, ZHANG J, et al. Processes and performances of bio-asphalt preparation by straw liquefaction [J]. Applied Chemical Industry, 2021, 50(7): 1776-1779.
[6] 广西大学. 一种海藻油生物沥青及海藻油生物沥青混合物的制备方法: CN201810046564.7[P]. 2018-07-27.
[7] MUHAMMAD Z, SABZOI N, SRINIVASAN M, et al. Sustainable asphalt rejuvenation using waste cooking oil: a comprehensive review [J]. Journal of Cleaner Production, 2021(278): 123304.
[8] 何东坡, 马明洋. 改性生物沥青耐老化性能研究[J]. 公路工程, 2019, 44(1): 193-197.
HE D P, MA M Y. Research on aging resistance of modified bio-asphalt [J]. Highway Engineering, 2019, 44(1): 193-197.
[9] Al-SABAEEI A M, NAPIAH M B, SUTANTO M H, et al. A systematic review of bio-asphalt for flexible pavement applications: coherent taxonomy, motivations, challenges and future directions [J]. Journal of Cleaner Production, 2019, 249(23): 119357.
[10] 隋倩倩, 杨忠连, 汪娟, 等. 生物质快速热解液化工艺研究进展[J]. 化学与生物工程, 2012, 29(3): 1-5.
SUI Q Q, YANG Z L, WANG J, et al. Research progress of fast pyrolysis liquefaction process of biomass [J]. Chemistry & Bioengineering, 2012, 29(3): 1-5.
[11] BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading [J]. Biomass & Bioenergy, 2012, 38: 68-94.
[12] 凃成. 生物质制备沥青工艺研究与优化[D]. 青岛: 中国石油大学(华东), 2016.
[13] SU N Y, XIAO F P, WANG J G, et al. Productions and applications of bio-asphalts—a review [J]. Construction and Building Materials, 2018, 183: 578-591.
[14] LAIRD D A, BROWN R C, AMONETTE J E, et al. Review of the pyrolysis platform for coproducing bio-oil and biochar [J]. Biofuels Bioproducts & Biorefining, 2009, 3(5): 547-562.
[15] 方乐, 王伟文. 生物质快速热裂解反应器的研究进展[J]. 当代化工, 2020, 49(1): 233-236.
FANG L, WANG W W. Research progress of biomass fast pyrolysis reactor [J]. Contemporary Chemical Industry, 2020, 49(1): 233-236.
[16] 何咏涛. 利用农林废弃物联产生物油和生物炭[D]. 杭州:浙江工业大学, 2012.
[17] ERDOGDU A E, POLAT R, OZBAY G. Pyrolysis of goat manure to produce bio-oil [J]. Engineering Science and Technology, an International Journal, 2019, 22(2): 452-457.
[18] MA S, ZHANG L, ZHU L, et al. Preparation of multipurpose bio-oil from rice husk by pyrolysis and fractional condensation [J]. Journal of Analytical and Applied Pyrolysis, 2018, 131: 113-119.
[19] LEHTO J, OASMAA A, SOLANTAUSTA Y, et al. Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass [J]. Applied Energy, 2014, 116(C): 178-190.
[20] WRIGHT M M, DAUGAARD D E, SATRIO J A, et al. Techno-economic analysis of biomass fast pyrolysis to transportation fuels [J]. Fuel, 2010, 89(1,supplement): S2-S10.
[21] BRIDGWATER A V, PEACOCKE G V C. Fast pyrolysis processes for biomass [J]. Renewable & Sustainable Energy Reviews, 2000, 4(1): 1-73.
[22] MILLS-BEALE J, YOU Z, FINI E, et al. Aging influence on rheology properties of petroleum-based asphalt modified with biobinder[J]. Journal of Materials in Civil Engineering, 2014, 26(2): 358-366.
[23] ELHAM H F, ERIC W K, ABOLGHASEM S, et al. Chemical characterization of biobinder from swine manure: sustainable modifier for asphalt binder[J]. Journal of Materials in Civil Engineering, 2011, 23(11): 1506-1513.
[24] XU Y, YOU Z P, DAI Q L. Performance evaluation of asphalt binder modified by bio-oil generated from waste wood resources[J]. International Journal of Pavement Research and Technology, 2013, 6(4): 431.
[25] 许妍, 吴文彪, 丘克强. 核桃壳真空热解制备生物油[J]. 中南大学学报(自然科学版), 2013, 44(4): 1325-1331.
XU Y, WU W B, QIU K Q. Vacuum pyrolysis of walnut shell for preparetion of bio-oil [J]. Journal of Central South University(Science and Technology), 2013, 44(4): 1325-1331.
[26] 郑典模, 屈海宁, 孙云. 地沟油催化裂解制备生物燃油[J]. 南昌大学学报(工版), 2010, 32(3): 242-245.
ZHENG D M, QU H N, SUN Y. Biofuel preparation with hogwash oil by catalytic cracking [J]. Journal of Nanchang University (Engineering & Technology), 2010, 32(3): 242-245.
[27] BISWAS B, PANDEY N, BISHT Y, et al. Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk [J]. Bioresource Technology, 2017, 237: 57-63.
[28] OH S Y, KIM U J, CHOI I G, et al. Solvent effects on improvement of fuel properties during hydrodeoxygenation process of bio-oil in the presence of Pt/C [J]. Energy, 2016, 113: 116-123.
[29] KABIR G, DIN A T, HAMEED B H. Pyrolysis of oil palm mesocarp fiber catalyzed with steel slag-derived zeolite for bio-oil production [J]. Bioresource Technology, 2017, 249: 42-48.
[30] ALVAREZ J, LOPEZ G, AMUTIO M, et al. Characterization of the bio-oil obtained by fast pyrolysis of sewage sludge in a conical spouted bed reactor [J]. Fuel Processing Technology, 2016, 149: 169-175.
[31] LY H V, KIM S, CHOI J H, et al. Fast pyrolysis of saccharina japonica alga in a fixed-bed reactor for bio-oil production [J]. Energy Conversion and Management, 2016, 122: 526-534.
[32] FERNANDEZ-LOPEZ M, ANASTASAKIS K, JONG W D, et al. Temperature influence on the fast pyrolysis of manure samples: char, bio-oil and gases production [J]. E3s Web of Conferences, 2017, 22: 00043.
[33] ABNISA F, ARAMI-NIYA A, DAUD W, et al. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis [J]. Energy Conversion and Management, 2013, 76: 1073-1082.
[34] PAENPONG C, PATTIYA A. Effect of pyrolysis and moving-bed granular filter temperatures on the yield and properties of bio-oil from fast pyrolysis of biomass [J]. Journal of Analytical and Applied Pyrolysis, 2016, 119: 40-51.
[35] BRIDGWATER A V. Principles and practice of biomass fast pyrolysis processes for liquids [J]. Journal of Analytical and Applied Pyrolysis, 1999, 51(1-2): 3-22.
[36] PARK J J, LEE Y W, RYU C K, et al. Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields [J]. Bioresource Technology, 2014, 155: 63-70.
[37] BALAGURUMURTHY B, SRIVASTAVA, VINIT, et al. Value addition to rice straw through pyrolysis in hydrogen and nitrogen environments [J]. Bioresource Technology, 2015, 188: 273-279.
[38] AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass [J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1615-1624.
[39] ZHU Z, SI B, LU J, et al. Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk [J]. Bioresource Technology, 2017, 243: 9-16.
[40] ARUN J, SHREEKANTH S J, SAHANA R, et al. Studies on influence of process parameters on hydrothermal catalytic liquefaction of microalgae (Chlorella vulgaris) biomass grown in wastewater [J]. Bioresource Technology, 2017, 244: 963-968.
[41] ZHOU D, ZHANG L, ZHANG S, et al. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio-oil[J]. Energy & Fuels, 2010, 24(7): 4054-4061.
[42] ELLIOTT D C, BILLER P, ROSS A B, et al. Hydrothermal liquefaction of biomass: developments from batch to continuous process [J]. Bioresource Technology, 2015, 178: 147-156.
[43] ANASTASAKIS K, BILLER P, MADSEN R B, et al. Continuous hydrothermal liquefaction of biomass in a novel pilot plant with heat recovery and hydraulic oscillation [J]. Energies, 2018, 11(10): 2695.
[44] AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass [J]. Renewable & Sustainable Energy Reviews, 2011, 15(3): 1615-1624.
[45] BARREIRO D L, PRINS W, RONSSE F, et al. Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects [J]. Biomass & Bioenergy, 2013, 53: 113-127.
[46] TIAN C Y, LI B M, LIU Z D, et al. Hydrothermal liquefaction for algal biorefinery: a critical review [J]. Renewable & Sustainable Energy Reviews, 2014, 38: 933-950.
[47] VALDEZ P J, DICKINSON J G, SAVAGE P E. Characterization of product fractions from hydrothermal liquefaction of nannochloropsis sp. and the influence of solvents [J]. Journal of Virology, 2011, 19(2): 518-532.
[48] TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies [J]. Energy, 2011, 36(5): 2328-2342.
[49] CHIARAMONTI D, PRUSSI M, BUFFI M, et al. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production [J]. Applied Energy, 2017, 185: 963-972.
[50] DIMITRIADIS, ATHANASIOS, BEZERGIANNI, et al. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review [J]. Renewable & Sustainable Energy Reviews, 2017, 68: 113-125.
[51] 李振霞, 陈渊召, 周建彬, 等. 玉米秸秆纤维沥青混合料路用性能及机理分析[J]. 中国公路学报, 2019, 32(2): 47-58.
LI Z X, CHEN Y Z, ZHOU J B, et al. Analysis of road performance and fiber mechanism for corn stalk fiber asphalt mixture [J]. China Journal of Highway and Transport, 2019, 32(2): 47-58.
[52] CHEN Z N, YI J Y, CHEN Z G, et al. Properties of asphalt binder modified by corn stalk fiber [J]. Construction and Building Materials, 2019, 212: 225-235.
[53] 李巍巍. 棉秸秆纤维沥青混合料路用性能研究[D]. 西安: 长安大学, 2015.
[54] VALE A C D, CASAGRANDE M D T, SOARES J B. A study of behavior of natural fiber in stone matrix asphalt mixtures using two design methods [J]. Journal of Materials in Civil Engineering, 2014, 26(3): 457-465.
[55] 郎森. 秸秆复合纤维材料路用性能试验及评价研究[D]. 武汉: 武汉工业学院, 2011.
[56] LIU J Y, LI Z, CHEN H X, et al. Investigation of cotton straw fibers for asphalt mixtures [J]. Journal of Materials in Civil Engineering, 2020, 32(5): 04020105.
[57] 廖欢. 棉秸秆纤维沥青混合料性能研究[J]. 中国建材科技, 2017, 26(1): 27-29.
LIAO H. Study on performance of cotton straw fiber asphalt mixture [J]. China Building Materials Science & Technology, 2017, 26(1): 27-29.
[58] ARABANI M, TAHAMI S A. Assessment of mechanical properties of rice husk ash modified asphalt mixture [J]. Construction and Building Materials, 2017, 149: 350-358.
[59] HAN Z Q, SHA A M, TONG Z, et al. Study on the optimum rice husk ash content added in asphalt binder and its modification with bio-oil [J]. Construction and Building Materials, 2017, 147: 776-789.
[60] XUE Y J, WU S P, CAI J, et al. Effects of two biomass ashes on asphalt binder: dynamic shear rheological characteristic analysis [J]. Construction and Building Materials, 2014, 56: 7-15.
[61] ARABANI M, ESMAAELI N. Laboratory evaluation on effect of groundnut shell ash on performance parameters of asphalt binder and mixes [J]. Road Materials and Pavement Design, 2020, 21(6): 1565-1587.
[62] ABDELMAGID A A, FENG C P. Laboratory evaluation of the effects of short-term aging on high temperature performance of asphalt binder modified with crumb rubber and rice husk ash [J]. Liquid Fuels Technology, 2019, 37(13): 1557-1565.
[63] MIRHOSSEINI S A, KHABIRI M M, KAMALI M H, et al. Applying surface free energy method for evaluation of moisture damage in asphalt mixtures containing date seed ash [J]. Construction and Building Materials, 2016, 125: 408-416.
[64] ABDELMAGID A A, FENG C P. Evaluating the effect of rice-husk ash and crumb-rubber powder on the high-temperature performance of asphalt binder [J]. Journal of Materials in Civil Engineering, 2019, 31(12): 04019296.
[65] 王楹. 生物质灰改性沥青的制备和基本性能研究[J]. 中外公路, 2018, 38(2): 309-313.
WANG Y. Preparation and basic performance of biomass ash modified asphalt [J]. Journal of China & Foreign Highway, 2018, 38(2): 309-313.
[66] 廖晓锋, 雷茂锦, 陈忠达, 等. 生物结合料共混沥青的路用性能试验研究[J]. 材料导报, 2014, 28(2): 144-149.
LIAO X F, LEI M J, CHEN Z D, et al. Experimental research on the pavement performance of bio-binder mixing asphalt [J]. Materials Review, 2014, 28(2): 144-149.
[67] DONG Z, ZHOU T, WANG H, et al. Performance comparison between different sourced bioasphalts and asphalt mixtures [J]. Journal of Materials in Civil Engineering, 2018, 30(5): 04018063.
[68] ZHANG R, WANG H, JIANG X, et al. Thermal storage stability of bio-oil modified asphalt [J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018054.
[69] BAO D X, YU Y Y, ZHAO Q M. Evaluation of the chemical composition and rheological properties of bio-asphalt from different biomass sources [J]. Road Materials and Pavement Design, 2020, 21(7): 1829-1843.
[70] HAJIKARIMI P, ONOCHIE A, FINI E H. Characterizing mechanical response of bio-modified bitumen at sub zero temperatures [J]. Construction and Building Materials, 2020, 240: 117940.
[71] LI J, ZHANG F, MUHAMMAD Y, et al. Fabrication and properties of wide temperature domain pavement seaweed modified bio-bitumen [J]. Construction and Building Materials, 2019, 227: 117079.
[72] REN Y, ZHANG L, DUAN W, et al. Performance of bitumen coating sheet using biomass pyrolysis oil [J]. Journal of the Air & Waste Management Association, 2020, 70(2): 219-227.
[73] JEFFRY S N A, JAYA R P, HASSAN N A, et al. Mechanical performance of asphalt mixture containing nano-charcoal coconut shell ash [J]. Construction and Building Materials, 2018, 173: 40-48.
[74] 欧阳东, 陈楷. 低温焚烧稻壳灰的显微结构及其化学活性[J]. 硅酸盐学报, 2003, 31(11): 1121-1124.
OUYANG D, CHEN K. Microstructure and chemical activity of rice husk ash burned at low temperature [J]. Journal of The Chinese Ceramic Society, 2003, 31(11): 1121-1124.
[75] 欧阳东, 陈楷. 稻壳灰显微结构的研究[J]. 材料科学与工程学报, 2003, 21(5): 647-650.
OUYANG D, CHEN K. Study on the microstructure of rice husk ash [J]. Journal of Materials Science and Engineering, 2003, 21(5): 647-650.
[76] AMIRA M M S, RAJA N A R Z, YAACOB H, et al. Effect of grinding period on physical properties of modified bitumen using palm oil fuel ash (POFA) [J]. Journal of Physics Conference, 2018, 1049(1): 012004.
[77] CAI J, XUE Y J, WAN L, et al. Study on basic properties and high-temperature performance of rice-husk-ash-modified-asphalt [J]. Applied Mechanics & Materials, 2013, 333-335: 1889-1894.
[78] GAO J F, WANG H N, YOU Z P, et al. Rheological behavior and sensitivity of wood-derived bio-oil modified asphalt binders [J]. Applied Sciences, 2018, 8(6): 919.
[79] YANG X, YOU Z P, DAI Q L, et al. Mechanical performance of asphalt mixtures modified by bio-oils derived from waste wood resources [J]. Construction and Building Materials, 2014, 51: 424-431.
[80] YANG X, YOU Z P, MILLS-BEALE J. Asphalt binders blended with a high percentage of biobinders: aging mechanism using FTIR and rheology [J]. Journal of Materials in Civil Engineering, 2015, 27(4): 04014157.
[81] ZHANG R, WANG H N, YOU Z P, et al. Optimization of bio-asphalt using bio-oil and distilled water [J]. Journal of Cleaner Production, 2017, 165: 281-289.
[82] ZHANG R, YOU Z P, WANG H N, et al. The impact of bio-oil as rejuvenator for aged asphalt binder [J]. Construction and Building Materials, 2019, 196: 134-143.
[83] EL-FADEL M, KHOURY R. Strategies for vehicle waste-oil management: a case study [J]. Resources Conservation and Recycling, 2001, 33(2): 75-91.
[84] SUN Z J, YI J Y, FENG D C, et al. Preparation of bio-bitumen by bio-oil based on free radical polymerization and production process optimization [J]. Journal of Cleaner Production, 2018, 189: 21-29.
[85] SUN Z J, YI J Y, CHEN Z N, et al. Chemical and rheological properties of polymer modified bitumen incorporating bio-oil derived from waste cooking oil [J]. Materials and Structures, 2019, 52(5): 106.
[86] SUN D Q, LU T, XIAO F P, et al. Formulation and aging resistance of modified bio-asphalt containing high percentage of waste cooking oil residues [J]. Journal of Cleaner Production, 2017, 161: 1203-1214.
[87] XIE S X, LI Q, KARKI P, et al. Lignin as renewable and superior asphalt binder modifier [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 2817-2823.
[88] BATISTA K B, PADILHA R P L, CASTRO T O, et al. High-temperature, low-temperature and weathering aging performance of lignin modified asphalt binders [J]. Industrial Crops and Products, 2018, 111: 107-116.
[89] ARAFAT S, KUMAR N, WASIUDDIN N M, et al. Sustainable lignin to enhance asphalt binder oxidative aging properties and mix properties [J]. Journal of Cleaner Production, 2019, 217: 456-468.
[90] NORGBEY E, HUANG J Y, HIRSCH V, et al. Unravelling the efficient use of waste lignin as a bitumen modifier for sustainable roads [J]. Construction and Building Materials, 2020, 230: 116957.
[91] HUO L L, YAO Z L, ZHAO L X, et al. Contribution and potential of comprehensive utilization of straw in GHG emission reduction and carbon sequestration [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 349-359.
[92] KABIR S F, MOUSAVI M, FINI E H. Selective adsorption of bio-oils' molecules onto rubber surface and its effects on stability of rubberized asphalt [J]. Journal of Cleaner Production, 2020, 252: 119856.
[93] 岳红波, 陈筝, 叶群山, 等. 混杂纤维沥青胶浆及其混合料性能研究[J]. 武汉理工大学学报, 2007, 029(9): 31-34.
YUE H B, CHEN Z, YE Q S, et al. Research on the related properties of asphalt binders and mixtures containing hybrid fibers [J]. Journal of Wuhan University of Technology, 2007, 029(9): 31-34.
[94] 陈华鑫, 张争奇, 胡长顺. 纤维沥青路用性能机理[J]. 长安大学学报(自然科学版), 2002, 22(6): 5-7.
CHEN H X, ZHANG Z Q, HU C S. Interaction mechanism of asphalt with fiber in pavement [J]. Journal of Chang’an University(Natural Science Edition), 2002, 22(6): 5-7.
[95] MUNIANDY R, JAFARIAHANGARI H, YUNUS R, et al. Determination of rheological properties of bio mastic asphalt [J]. American Journal of Engineering and Applied Sciences, 2008, 1(3): 204-209.
[96] 张海伟, 郝培文, 梁建军, 等. 复合纤维组成优化及其混合料性能评价[J]. 北京工业大学学报, 2016, 42(2): 261-268.
ZHANG H W, HAO P W, LIANG J J, et al. Mix design and performance assessment of asphalt concretes with hybrid fibers [J]. Journal of Beijing University of Technology, 2016, 42(2): 261-268.
[97] 丁智勇. 纤维沥青及其混合料性能研究[D]. 西安: 长安大学, 2009.
[98] CHEN H X, XU Q W, CHEN S F, et al. Evaluation and design of fiber-reinforced asphalt mixtures [J]. Materials & Design, 2009, 30(7): 2595-2603.
[99] ABTAHI S M, SHEIKHZADEH M, HEJAZI S M. Fiber-reinforced asphalt-concrete—a review [J]. Construction and Building Materials, 2010, 24(6): 871-877.
[100] 林贤福, 陈志春. 沥青的纤维增强改性及其改性剂的研究[J]. 公路, 1999(1): 53-55.
LIN X F, CHEN Z C. Study on fiber reinforced modification of asphalt and its modifier [J]. Highway, 1999(1): 53-55.
[101] KHAN R, JABBAR A, AHMAD I, et al. Reduction in environmental problems using rice-husk ash in concrete [J]. Construction and Building Materials, 2012, 30: 360-365.
[102] RAZZAQ A K, YOUSIF R A, TAHY S. Characterization of hot mix asphalt modified by egg shell powder [J]. International Research Publication House, 2018, 11: 481-492.
[103] MO K H, ALENGARAM U J, JUMAAT M Z, et al. Recycling of seashell waste in concrete: a review [J]. Construction and Building Materials, 2018, 162: 751-764.
[104] EDALAT-BEHBAHANI A, SOLTANZADEH F, EMAM-JOMEH M, et al. Sustainable approaches for developing concrete and mortar using waste seashell [J]. European Journal of Environmental and Civil Engineering, 2021, 25(10): 1874-1893.
[105] LYU S T, XIA C D, YANG Q, et al. Improvements on the high-temperature stability, rheology, and stiffness performance of asphalt binder modified with waste crayfish shell powder [J]. Journal of Cleaner Production, 2020(264): 121745.
[106] 杨光, 申爱琴, 陈志国, 等. 季冻区橡胶粉与SBS复合改性沥青混合料性能及改性机理[J]. 长安大学学报(自然科学版), 2015, 35(6): 6-15.
YANGH G, SHEN A Q, CHEN Z G, et al. Pavement performance and modified mechanism of rubber powder and SBS compound modified asphalt mixture in seasonal freezing region [J]. Journal of Chang'an University (Natural Science Edition), 2015, 35(6): 6-15.
[107] XIANG L, WANG Z G, DU Y, et al. Preparation technology and performance analysis of crumb rubber and SBS composite modified asphalt binder [J]. Advanced Materials Research, 2011, 160: 1320-1324.
[108] ZHANG F, HU C. Physical and rheological properties of crumb rubber/styrene-butadiene-styrene compound modified asphalts [J]. Polymer Composites, 2017, 38(9): 1918-1927.
[109] 袁德明, 苏波, 廖克俭, 等. 废旧橡胶粉改性沥青的制备及其影响因素[J]. 合成橡胶工业, 2007(5): 382-386.
YUAN D M, SU B, LIAO K J, et al. Preparation of rubber crumb modified asphalt and its influencing factors [J]. China Synthetic Rubber Industry, 2007(5): 382-386.
[110] DONG R K, ZHAO M Z, XIA W, et al. Chemical and microscopic investigation of co-pyrolysis of crumb tire rubber with waste cooking oil at mild temperature [J]. Waste Management, 2018, 79: 516-525.
[111] DONG R K, ZHAO M Z. Research on the pyrolysis process of crumb tire rubber in waste cooking oil [J]. Renewable Energy, 2018, 125: 557-567.
[112] DONG R K, ZHAO M Z, TANG N P. Characterization of crumb tire rubber lightly pyrolyzed in waste cooking oil and the properties of its modified bitumen [J]. Construction and Building Materials, 2019, 195: 10-18.
[113] RAHMAN M T, HAININ M R, BAKAR W A. Use of waste cooking oil, tire rubber powder and palm oil fuel ash in partial replacement of bitumen [J]. Construction and Building Materials, 2017, 150: 95-104.
[114] LEI Y, WANG H N, FINI E H, et al. Evaluation of the effect of bio-oil on the high-temperature performance of rubber modified asphalt [J]. Construction and Building Materials, 2018, 191: 692-701.
[115] YI X Y, DONG R K, TANG N P. Development of a novel binder rejuvenator composed by waste cooking oil and crumb tire rubber [J]. Construction and Building Materials, 2020, 236: 117621.
[116] 包建业, 王静. 生物改性橡胶沥青流变性能研究[J]. 中外公路, 2018, 38(6): 250-253.
BAO J Y, WANG J. Study on rheological properties of bio-modified rubber asphalt [J]. Journal of China & Foreign Highway, 2018, 38(6): 250-253.
[117] 叶智刚, 孔宪明, 余剑英, 等. 橡胶粉改性沥青的研究[J]. 武汉理工大学学报, 2003, 25(1): 11-14.
YE Z G, KONG X M, YU J Y, et al. Investigation on crumb rubber modified asphalt [J]. Journal of Wuhan University of Techology, 2003, 25(1): 11-14.
[118] 崔亚楠, 邢永明, 王岚, 等. 废胶粉改性沥青改性机理[J]. 建筑材料学报, 2011, 14(5): 634-638.
CUI Y N, XING Y M, WANG L, et al. Improvement mechanism of crumb rubber-modified asphalt [J]. Journal of Building Materials, 2011, 14(5): 634-638.
[119] 葛正浩, 兰云利, 石美浓, 等. SBS对生物质纤维废旧塑料复合材料的影响[J]. 塑料, 2015, 44(1): 16-18.
GE Z H, LAN Y L, SHI M N, et al. Influence of SBS on biomass fiber/waste plastic composite [J]. Plastics, 2015, 44(1): 16-18.
[120] 杨俊, 高磊, 焦雷, 等. 生物质纤维填充聚合物复合材料的界面行为[J]. 高分子材料科学与工程, 2011, 27(9): 56-59.
YANG J, GAO L, JIAO L, et al. Interface behavior of bio-fiber filled polymer composite [J]. Polymer Materials Science & Engineering, 2011, 27(9): 56-59.
[121] CHEN C L, PODOLSKY J H, WILLIAMS R C, et al. Determination of the optimum polystyrene parameters using asphalt binder modified with poly(styrene-acrylated epoxidised soybean oil) through response surface modelling[EB/OL]. Road Materials & Pavement Design, 2017: 1-20(2017-11-24)[2021-08-22]. https://www.tandfonline.com/doi/full/10.1080/14680629.2017.1407354.
[122] ONOCHIE A, FINI E H, YANG X, et al. Rheological characterization of nano-particle based bio-modified binder[C]∥Proceedings of TRB 2013 Annual Meeting. Washington D C: TRB, 2013: 125-131.
[123] ELHAM H F, ERIC W K, ABOLGHASEM S, et al. Chemical characterization of biobinder from swine manure: sustainable modifier for asphalt binder [J]. Journal of Materials in Civil Engineering, 2011, 23(11): 1506-1513.
[124] ELHAM H F, AL-QADI I L, YOU Z P, et al. Partial replacement of asphalt binder with bio-binder: characterization and modification [J]. International Journal of Pavement Engineering, 2012, 13(6): 515-522.
[125] SANI A, MOHD H M R, SHARIFF K A, et al. Engineering and microscopic characteristics of natural rubber latex modified binders incorporating silane additive[EB/OL]. International Journal of Pavement Engineering, 2019: 1-10(2019-01-29)[2021-08-22]. https://www.tandfonline.com/doi/full/10.1080/10298436.2019.1573319.
[126] SETYAWAN A, DJUMARI, LEGOWO S J, et al. Design and characterization of renewable bioasphalt containing damar resin, fly ash, wasted cooking oil and latex [J]. IOP Conference Series:Materials Science and Engineering, 2017, 176(1): 012027.
[1] Yu Jian, Chen Ze-hong, Peng Xin-wen. Application of Biomass-based Energy Storage Materials in Flexible Devices [J]. Journal of Guangdong University of Technology, 2022, 39(01): 41-49.
[2] Pan Ji-sheng, Deng Jia-yun, Zhang Qi-xiang, Yan Qiu-sheng. A Review of the Application of Advanced Oxidation Technology of Hydroxyl Radicals [J]. Journal of Guangdong University of Technology, 2019, 36(02): 70-77,85.
[3] CHEN Shi-Guang1, SUN Hong-Wei1, WANG Zhi-Hong2. Study of Effects of Typical Micronutrients Phosphorous, Iron, Manganese and Zinc on Cyanobacteria Blooms [J]. Journal of Guangdong University of Technology, 2011, 28(2): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!