Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (04): 85-93.doi: 10.12052/gdutxb.220159
• Computer Science and Technology • Previous Articles Next Articles
He Yi-shan, Wang Yong-hua, Wan Pin, Wang Lei, Wu Wen-tao
CLC Number:
[1] SU H, ZHANG X. Cross-layer based opportunistic MAC protocols for QoS provisionings over Cognitive radio wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(1): 118-129. [2] WANG J, HUANG Y, JIANG H. Improved algorithm of spectrum allocation based on graph coloring model in cognitive radio[C]//2009 WRI International Conference on Communications and Mobile Computing. Kunming: IEEE, 2009: 353-357. [3] GAO L, DUAN L, HUANG J. Two-sided matching based cooperative spectrum sharing[J]. IEEE Transactions on Mobile Computing, 2017, 16(2): 538-551. [4] 刘新浩, 马昕睿, 王大为. 基于图论模型的认知无线电频谱分配仿真建模研究[J]. 电脑与电信, 2021(3): 16-20.LIU X H, MA X R, WANG D W. Simulation modeling of cognitive radio spectrum allocation based on graph theory model[J]. Computer & Telecommunication, 2021(3): 16-20. [5] LIU X, SUN C, ZHOU M, et al. Reinforcement learning based dynamic spectrum access in cognitive internet of vehicles[J]. China Communications, 2021, 18(7): 58-68. [6] 郑思远, 崔苗, 张广驰. 基于强化学习的无人机安全通信轨迹在线优化策略[J]. 广东工业大学报, 2021, 38(4): 59-64.ZHENG S Y, CUI M, ZHANG G C. Reinforcement learning-based online trajectory optimization for secure UAV communications[J]. Journal of Guangdong University of Technology, 2021, 38(4): 59-64. [7] XU F, YANG F, BAO S, et al. DQN inspired joint computing and caching resource allocation approach for software defined information-centric Internet of Things network[J]. IEEE Access, 2019, 7: 61987-61996. [8] CHEN Y, LI Y, XU D, et al. DQN-based power control for IoT transmission against jamming[C]//2018 IEEE 87th Vehicular Technology Conference (VTC Spring). Portugal: IEEE, 2018: 1-5. [9] SUN Y, PENG M, POOR H V. A distributed approach to improving spectral efficiency in uplink device-to-device-enabled cloud radio access networks[J]. IEEE Transactions on Communications, 2018, 66(12): 6511-6526. [10] KAI C H, MENG X W, MEI L S, et al. Deep reinforcement learning based user association and resource allocation for d2d-enabled wireless networks[C]//2021 IEEE/CIC International Conference on Communications in China (ICCC). Xiamen: IEEE, 2021: 1172-1177. [11] ASMUTH J, LI L, LITTMAN M L, et al. A bayesian sampling approach to exploration in reinforcement learning[J]. Eprint Arxiv, 2009, 58(7): 1805-1810. [12] ZHANG R B, ZHONG Y, GU G C. A new accelerating algorithm for multi-agent reinforcement learning[J]. Journal of Harbin Institute of Technology, 2005, 12(1): 48-51. [13] VIRIYASITAVAT W, BOBAN M, TSAI H M, et al. Vehicular communications: survey and challenges of channel and propagation models[J]. IEEE Vehicular Technology Magazine, 2015, 10(2): 55-66. [14] MEINIL J, KYSTI P, JMS T, et al. WINNER II channel models[M]. New Jersey: John Wiley & Sons, Ltd, 2009. [15] SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. Cambridge: MIT Press, 2018. [16] 傅波. 基于交替跟踪的分布式多智能体合作学习算法研究[D]. 长沙: 中南大学, 2014. [17] 郭瑝清, 陈锋. 干线动态协调控制的深度Q网络方法[J]. 信息技术与网络安全, 2020, 39(6): 1-6.GUO H Q, CHEN F. A deep Q network method for dynamic arterial coordinated control[J]. Cyber Security and Data Governance, 2020, 39(6): 1-6. |
[1] | Su Tian-ci, He Zi-nan, Cui Miao, Zhang Guang-chi. Intelligent Path Planning Algorithm for Multi-UAV-assisted Data Collection Systems [J]. Journal of Guangdong University of Technology, 2023, 40(04): 77-84. |
[2] | Guo Xin-de, Chris Hong-qiang Ding. An AGV Path Planning Method for Discrete Manufacturing Smart Factory [J]. Journal of Guangdong University of Technology, 2021, 38(06): 70-76. |
[3] | Ye Wei-jie, Gao Jun-li, Jiang Feng, Guo Jing. A Research on a Training Model to Improve the Development Efficiency of Robot Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2020, 37(05): 46-50. |
[4] | Wu Yun-xiong, Zeng Bi. Trajectory Tracking and Dynamic Obstacle Avoidance of Mobile Robot Based on Deep Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2019, 36(01): 42-50. |
|