Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (04): 77-84.doi: 10.12052/gdutxb.220090
• Computer Science and Technology • Previous Articles Next Articles
Su Tian-ci, He Zi-nan, Cui Miao, Zhang Guang-chi
CLC Number:
[1] ZHAO N, LU W D, SHENG M, et al. UAV-assisted emergency networks in disasters[J]. IEEE Wireless Communications, 2019, 26(1): 45-51. [2] ZENG Y, ZHANG R, LIM T J. Wireless communications with unmanned aerial vehicles: opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36-42. [3] GAO M, XU X, KLINGER Y, et al. High-resolution mapping based on an unmanned aerial vehicle (UAV) to capture paleoseismic offsets along the Altyn-Tagh fault, China[J]. Sci Rep, 2017, 7(1): 1-11. [4] ZHONG C, GURSOY M C, VELIPASALAR S. Deep reinforcement learning-based edge caching in wireless networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(1): 48-61. [5] GONG J, CHANG T, SHEN C, et al. Flight time minimization of UAV for data collection over wireless sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 1942-1954. [6] WU H, WEI Z, HOU Y, et al. Cell-edge user offloading via flying UAV in non-uniform heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2411-2426. [7] HUANG H, YANG Y, WANG H, et al. Deep reinforcement learning for UAV navigation through massive MIMO technique[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1117-1121. [8] MOZAFFARI F, SAAD W, BENNIS M, et al. Unmanned aerial vehicle with underlaid device-to-device communications: performance and tradeoffs[J]. IEEE Transactions on Wireless Communications, 2016, 15(6): 3949-3963. [9] DUONG T Q, NGUYEN L D, TUAN H D, et al. Learning-aided realtime performance optimisation of cognitive UAV-assisted disaster communication[C]//2019 IEEE Global Communications Conference (GLOBECOM). Waikoloa: IEEE, 2019: 1-6. [10] DUONG T Q, NGUYEN L D, NGUYEN L K, et al. Practical optimization of path planning and completion time of data collection for UAV-enabled disaster communications[C]// 201915th International Wireless Communications & Mobile Computing Conference (IWCMC). Tangier: IEEE, 2019: 372-377. [11] WANG K, TANG, LIU P, et al. UAV-based and energy-constrained data collection system with trajectory, time, and collection scheduling optimization[C]// International Conference on Communications in China (ICCC). Xiamen: IEEE, 2021: 893-898. [12] ZHAN C, ZENG Y, ZHANG R. Energy-efficient data collection in UAV enabled wireless sensor network[J]. IEEE Wireless Communications Letters, 2018, 7(3): 328-331. [13] YOU C, ZHANG R. 3D trajectory optimization in Rician fading for UAV-enabled data harvesting[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3192-3207. [14] BAYERLEIN H, DE KERRET P, GESBERT D. Trajectory optimization for autonomous flying base station via reinforcement learning[C]// 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Kalamata: IEEE, 2018: 1-5. [15] ZHANG B, LIU C H, TANG J, et al. Learning-based energy-efficient data collection by unmanned vehicles in smart cities[J]. IEEE Transactions on Industrial Informatics, 2018, 14(4): 1666-1676. [16] BAYERLEIN H, THEILE M, CACCAMO, et al. Multi-UAV path planning for wireless data harvesting with deep reinforcement learning[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1171-1187. [17] XU S, ZHANG X, LI C, et al. Deep reinforcement learning approach for joint trajectory design in multi-UAV IoT networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3389-3394. [18] MA J, ZHANG Y, ZHANG J, et al. Solution to traveling agent problem based on improved ant colony algorithm[C]// 2008 ISECS International Colloquium on Computing, Communication, Control, and Management. Guangzhou: IEEE, 2008: 57-60. [19] HUANG Z, LIN H, ZHANG G. The USV path planning based on an improved DQN algorithm[C]// 2021 International Conference on Networking, Communications and Information Technology (NetCIT). Manchester: IEEE, 2021: 162-166. [20] XU W, CHEN L, YANG H. A comprehensive discussion on deep reinforcement earning[C]// 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). Beijing: IEEE, 2021: 697-702. [21] TEJA K V S S R, LEE M. Efficient practice for deep reinforcement learning[C]// 2019 IEEE Symposium Series on Computational Intelligence (SSCI). Xiamen: IEEE, 2019: 77-84. |
[1] | He Yi-shan, Wang Yong-hua, Wan Pin, Wang Lei, Wu Wen-tao. An Improved Double Deep Q Network for Multi-user Dynamic Spectrum Access [J]. Journal of Guangdong University of Technology, 2023, 40(04): 85-93. |
[2] | Wu Qing-jie, Cui Miao, Zhang Guang-chi, Chen Wei. End-to-End Throughput Maximization for UAV-Enabled Data Collection Systems [J]. Journal of Guangdong University of Technology, 2022, 39(06): 53-61. |
[3] | Guo Xin-de, Chris Hong-qiang Ding. An AGV Path Planning Method for Discrete Manufacturing Smart Factory [J]. Journal of Guangdong University of Technology, 2021, 38(06): 70-76. |
[4] | Ye Wei-jie, Gao Jun-li, Jiang Feng, Guo Jing. A Research on a Training Model to Improve the Development Efficiency of Robot Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2020, 37(05): 46-50. |
[5] | Wu Yun-xiong, Zeng Bi. Trajectory Tracking and Dynamic Obstacle Avoidance of Mobile Robot Based on Deep Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2019, 36(01): 42-50. |
|