广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (06): 38-44.doi: 10.12052/gdutxb.190068

• 综合研究 • 上一篇    下一篇

具有Allee效应捕食-竞争系统的时空动态分析

刘陈霖, 郑三强, 韩晓卓   

  1. 广东工业大学 应用数学学院, 广东 广州 510520
  • 收稿日期:2019-05-06 出版日期:2019-11-28 发布日期:2019-11-01
  • 通信作者: 韩晓卓(1978-),女,教授,博士,硕士生导师,主要研究方向为生物数学.E-mail:hanxzh@gdut.edu.cn E-mail:hanxzh@gdut.edu.cn
  • 作者简介:刘陈霖(1994-),女,硕士研究生,主要研究方向为生物数学.
  • 基金资助:
    国家自然科学基金资助项目(31670391)

A Spatio-temporal Dynamic Analysis of a Predation-competition System with Allee Effect

Liu Chen-lin, Zheng San-qiang, Han Xiao-zhuo   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2019-05-06 Online:2019-11-28 Published:2019-11-01

摘要: 具有Allee效应的局域种群动态及实证研究是种群生态学的研究热点之一.当前研究表明种群密度过低引起的Allee效应对单一种群或集合种群的时间动态及其空间分布都产生复杂的影响.然而,在较复杂的生态关系中,对于Allee效应如何影响系统动态还缺乏较全面的认识.通过建立具有Allee效应的捕食者与具有竞争关系的被捕食者之间的生态系统,分析了Allee效应指数和种群初始密度对该系统中各物种种群密度及空间分布动态的影响.研究结果表明:捕食者具有Allee效应引起系统产生阻尼振荡,不利于捕食-竞争系统的稳定; Allee效应阈值的增加促使捕食者种群密度减少,被捕食者种群密度增加;捕食者的初始种群大小对此系统具有显著影响——初值较大时,系统最终达到稳定;初值较小时,系统则产生混沌现象;具有Allee效应的系统在空间中更易产生聚集式分布模式.本文观点可为物种保护提供必要的理论依据.

关键词: Allee效应, 捕食-竞争系统, 稳定性分析, 数值模拟, 空间分布模式

Abstract: The local population dynamics with Allee effect and its empirical research are one of the research hotspots in population ecology. Current studies show that the Allee effect caused by the low population density has complex impacts on the time dynamics and the spatial distribution of a single population or metapopulation. However, comprehensive understanding of how the Allee effect will affect the system dynamics in complex ecological relationships is not enough. An ecosystem containing predators with Allee effect and prey with competing relationship is established. And then, the effect of the Allee effect index and the population initial density on the population density and the spatial distribution of each species are analyzed by the ecosystem. The results show that the predators with Allee effect cause the system to produce damped oscillation, against the stability of predation-competition system; increasing the Allee effect threshold prompts the population density of predators to decrease, and the population density of preys to increase; the initial population size of predator has great impacts on the system, and if the initial value is large, the system finally reaches a stable state; however, if the initial value is small, the system is in chaos; the systems with Allee effect are more likely to generate an aggregated distribution pattern in space. These insights can provide necessary theoretical basis for species conservation.

Key words: Allee effects, predation-competition system, stability analysis, numerical simulation, spatial pattern

中图分类号: 

  • Q141
[1] ALLEE W C. Animal aggregations:a request for information[J]. The Condor, 1923, 25(4):129-131
[2] ETIENNE R S, HEMERIK L. The founder and Allee effects in the patch occupancy metapopulation model[M]//REYDON T A. C, HEMERIK L. Current themes in theoretical biology. New York:Springer, 2005:203-232.
[3] GREENE C M. Allee effects[J]. Encyclopedia of Ecology, 2008, 35(3):123-127
[4] LIU Z G, ZHAO X, ZHANG F P. Allee effects of local populations and the synchrony of metapopulation[J]. Acta Ecologica Sinica, 2012, 32(1):1-6
[5] GASCOIGNE J C, LIPCIUS R N. Allee effects driven by predation[J]. Journal of Applied Ecology, 2004, 41(5):801-810
[6] GASCOIGNE J, BEREC L, GREGORY S, et al. Dangerously few liaisons:a review of mate-finding Allee effects[J]. Population Ecology, 2009, 51(3):355-372
[7] AMARASEKARE P. Allee effects in metapopulation dynamics[J]. American Naturalist, 1998, 152(2):298-302
[8] WANG W X, ZHANG Y B, LIU C Z. Analysis of a discrete-time predator-prey system with Allee effect[J]. Ecological Complexity, 2011, 8(1):81-85
[9] HANSKI I. Uniting two general patterns in the distribution of species[J]. Science, 1997, 275(5298):397-400
[10] ZHOU S R, LIU Y F, WANG G. The stability of predator-prey systems subject to the Allee effects[J]. Theoretical Population Biology, 2005, 67(1):23-23
[11] MOROZOV A, ANDREW Y, PETROVSKII S, et al. Bifurcations and chaos in a predator-prey system with the Allee effect[J]. Proceedings Biological Sciences, 2004, 271(1546):1407-1414
[12] WANG G, LIANG X G, WANG F Z. The competitive dynamics of populations subject to an Allee effect[J]. Ecological Modelling, 1999, 124(2-3):183-192
[13] SINGH M K, BHADAURIA B S, SINGH B K. Bifurcation analysis of modified Leslie-Gower predator-prey model with double Allee effect[J]. Ain Shams Engineering Journal, 2016, 9(4):1263-1277
[14] BOUKAL D S, BEREC L. Single-species models of the Allee effect:extinction boundaries, sex ratios and mate encounters[J]. Journal of Theoretical Biology, 2002, 218(3):375-394
[15] 周淑荣, 王刚. 集合种群的似Allee效应[J]. 生物数学学报, 2002, 17(3):324-328 ZHOU S R, WANG G. Allee-like effects in metapopulation[J]. Journal of Biomathematics, 2002, 17(3):324-328
[16] 惠苍. 集合种群空间混沌的模拟研究以及Allee效应、拥挤效应与捕食效应对空间模式的影响[J]. 西北植物学报, 2004, 24(3):370-383 HUI C. Spatial chaos of metapopulation incurred by Allee effect, overcrowding effect and predation effect[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(3):370-383
[17] KYLAFIS G, LOREAU M. Niche construction in the light of niche theory[J]. Ecology Letters, 2011, 14(2):82-90
[18] KANEKO K. Coupled map lattice[M]. Saarbrücken:Alphascript Publishing, 1991:237-247.
[19] 王志斌, 张旭峰. 均匀耦合映像格子中的时空周期图案[J]. 中北大学学报(自然科学版), 2000, 21(3):202-205 WANG Z B, ZHANG X F. Spatiotemporal periodic patterns in symmetrically coupled map lattices[J]. Journal of North University of China, 2000, 21(3):202-205
[20] BOCCARA N. Modeling complex systems[J]. Agricultural Economics, 2005, 58(2):65-66
[21] ZHANG F, LI Z Z, HUI C. Spatiotemporal dynamics and distribution patterns of cyclic competition in metapopulation[J]. Ecological Modelling, 2006, 193(3-4):721-735
[22] HUI C, LI Z. Distribution patterns of metapopulation determined by Allee effects[J]. Population Ecology, 2004, 46(1):55-63
[23] 王鑫厅, 王炜, 刘佳慧, 等. 植物种群空间分布格局测定的新方法:摄影定位法[J]. 植物生态学报, 2006, 30(4):571-575 WANG X T, WANG W, LIU J H, et al. A new method measuring plant population spatial patterns:photography orientation[J]. Chinese Journal of Plant Ecology, 2006, 30(4):571-575
[24] 莫昌健, 韩晓卓. 生态位构建作用对捕食-竞争系统的影响[J]. 生态科学, 2016, 35(5):73-81 MO C J, HAN X Z. The effects of niche construction on prey-competition system[J]. Ecological Science, 2016, 35(5):73-81
[25] 黄亚玲. Allee效应对具有生态位构建作用的捕食系统的影响[D]. 广州:广东工业大学, 2016.
[26] HUI C, LI Z. Dynamical complexity and metapopulation persistence[J]. Ecological Modelling, 2003, 164(2-3):201-209
[1] 刘效洲, 朱睿, 朱光羽. 天然气掺氢燃烧技术在旋流式燃气灶上的数值模拟研究[J]. 广东工业大学学报, 2023, 40(01): 113-121.
[2] 邹翀, 唐雄民, 陈伟正, 江天鸿, 方文睿. 脉冲电流源作用下大气压介质阻挡放电的特性分析[J]. 广东工业大学学报, 2022, 39(04): 36-45.
[3] 戴美玲, 程成, 吴智文, 卢镇伟, 卢杰迅, 杨坚, 杨福俊. 开孔空心球结构的准静态压缩力学行为[J]. 广东工业大学学报, 2022, 39(04): 83-90,97.
[4] 刘效洲, 朱光羽. 循环流化床锅炉风室内流动特性及优化研究[J]. 广东工业大学学报, 2022, 39(03): 116-124.
[5] 李宇航, 高振宇, 杨雪强, 刘攀. 静压钢板桩贯入阻力试验与数值仿真[J]. 广东工业大学学报, 2022, 39(01): 129-134.
[6] 罗钧午, 李冬梅, 梁帅, 王帅超, 肖曙红. 十字交叉型微通道内液滴形成的数值模拟研究[J]. 广东工业大学学报, 2020, 37(05): 68-74.
[7] 甘阳阳, 李志生. 空气幕对厨房内PM2.5控制效果的模拟与分析[J]. 广东工业大学学报, 2020, 37(03): 82-87.
[8] 刘铭炜, 禹智涛, 贺绍华. 基于统一理论的钢管混凝土拱桥稳定性分析[J]. 广东工业大学学报, 2018, 35(06): 63-68.
[9] 吴成赫, 刘丽孺, 陈毅刚, 王璋元. 旋转集热板式太阳能烟囱性能研究[J]. 广东工业大学学报, 2018, 35(05): 70-74.
[10] 赵冰春, 汪新, 赖志平. 居住小区布局形式对热环境的影响[J]. 广东工业大学学报, 2016, 33(06): 91-95.
[11] 王长宏, 黄炯桐, 曾文强. 高熔点钢板电阻点焊电极传热特性数值模拟与分析[J]. 广东工业大学学报, 2016, 33(03): 6-10.
[12] 刘勇健, 刘意美, 陈创鑫, 王颖, 罗启洋, 林辉. 软土深基坑围护结构水平变形特性研究[J]. 广东工业大学学报, 2016, 33(01): 89-94.
[13] 杨艺. 海水太阳池非稳态热质传递有限容积法模型[J]. 广东工业大学学报, 2015, 32(2): 120-125.
[14] 赖志平, 汪新. 某会展中心建筑表面风压分布的数值模拟[J]. 广东工业大学学报, 2014, 31(2): 78-84.
[15] 张雅宁, 杨春山, 刘锦伟, 何娜. 基坑开挖对既有桥梁桩基的数值分析[J]. 广东工业大学学报, 2014, 31(1): 107-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!