广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (01): 71-77.doi: 10.12052/gdutxb.210078

• 综合研究 • 上一篇    下一篇

两种不同脉冲欺骗攻击下随机多智能体系统的均方拟一致性

曾梓贤, 彭世国, 黄昱嘉, 谷志华, 冯万典   

  1. 广东工业大学 自动化学院,广东 广州 510006
  • 收稿日期:2021-05-21 发布日期:2022-01-20
  • 通信作者: 彭世国(1967-),男,教授,博士生导师,主要研究方向为随机系统分析与控制、多智能体系统的分析与综合,E-mail:psg7202@126.com
  • 作者简介:曾梓贤(1997-),男,硕士研究生,主要研究方向为多智能体系统一致性问题、非线性系统和欺骗攻击,E-mail:zzxian1007@163.com
  • 基金资助:
    国家自然科学基金资助项目(61973092);广东省基础与应用基础研究基金资助项目(2019A1515012104)

Mean Square Quasi-consensus of Stochastic Multi-agent Systems Under Two Different Impulsive Deception Attacks

Zeng Zi-xian, Peng Shi-guo, Huang Yu-jia, Gu Zhi-hua, Feng Wan-dian   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-05-21 Published:2022-01-20

摘要: 考虑实际应用中多智能体系统所处环境的复杂性及相关通信网络的开放性, 主要研究了一类随机多智能体系统在受到两种不同脉冲欺骗攻击情况下实现均方拟一致性问题。所考虑的两种脉冲欺骗攻击包括替代攻击和虚假数据注入攻击, 而攻击发生的概率则是通过引入服从伯努利分布的随机变量加以描述。结合随机过程相关知识和李雅普诺夫稳定性理论, 给出系统实现均方拟一致性充分条件。条件表明, 系统在遭受两种不同攻击的情况下, 误差能保持在一定的范围内。最后, 数值仿真验证了结果的有效性。

关键词: 多智能体系统, 随机噪声干扰, 替代攻击, 虚假数据注入攻击, 均方拟一致性

Abstract: Considering the complexity of the environment and the openness of related communication networks, the problem of mean square quasi-consensus for a class of stochastic multi-agent systems under two different impulsive deception attacks is studied. The impulsive deception attacks considered here include replacement attack and false data injection attack, while the probabilities of attacks are described by introducing random variables that obey Bernoulli distribution. By employing the knowledge of stochastic process and Lyapunov stability theory, the sufficient conditions of quasi-consensus are given. The conditions show that the error of systems can be kept in a certain range under two different attacks. Finally, a numerical simulation is given to verify the effectiveness of the results.

Key words: multi-agent systems, random noise disturbances, replacement attacks, false data injection attacks, mean square quasi-consensus

中图分类号: 

  • TP273
[1] 周琪, 陈广登, 鲁仁全, 等. 基于干扰观测器的输入饱和多智能体系统事件触发控制[J]. 中国科学: 信息科学, 2019, 49(11): 1502-1516.
ZHOU Q, CHEN G D, LU R Q, et al. Disturbance observer-based event triggered control for input saturated multi-agent systems [J]. Chinese Science: Information Science, 2019, 49(11): 1502-1516.
[2] 张弘烨, 彭世国. 基于模型简化法的含有随机时延的多智能体系统一致性研究[J]. 广东工业大学学报, 2019, 36(2): 86-90, 96.
ZHANG H Y, PENG S G. A research on the consensus problem of multi-agent systems with random time delays based on model reduction [J]. Journal of Guangdong University of Technology, 2019, 36(2): 86-90, 96.
[3] HE W, MO Z, Han Q L, et al. Secure impulsive synchronization in Lipschitz-type multi-agent systems subject to deception attacks [J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(5): 1326-1334.
[4] ZHOU Q, XU S, CHEN B, et al. Stability analysis of delayed genetic regulatory networks with stochastic disturbances [J]. Physics Letters A, 2009, 373(41): 3715-3723.
[5] HU M, GUO L, HU A, et al. Leader-following consensus of linear multi-agent systems with randomly occurring nonlinearities and uncertainties and stochastic disturbances [J]. Neurocomputing, 2015, 149: 884-890.
[6] ZHANG Z H, PENG S G, CHEN T. Leader-following mean square consensus of stochastic multi-agent systems with ROUs and RONs under periodically variable impulse time windows [J]. Neurocomputing, 2020, 412: 276-286.
[7] WANG F, ZHANG Y, ZHANG L, et al. Finite-time consensus of stochastic nonlinear multi-agent systems [J]. International Journal of Fuzzy Systems, 2020, 22(1): 77-88.
[8] GONG X, PAN Y J, LI J N, et al. Leader-following consensus for multi-agent systems with stochastic packet dropout[C]//2013 10th IEEE International Conference on Control and Automation (ICCA). Hangzhou: IEEE, 2013: 1160-1165.
[9] YE D, YANG X. Distributed event-triggered consensus for nonlinear multi-agent systems subject to cyber attacks [J]. Information Sciences, 2019, 473: 178-189.
[10] ZUO Z, CAO X, WANG Y. Security control of multi-agent systems under false data injection attacks [J]. Neurocomputing, 2020, 404: 240-246.
[11] FENG J, XIE J, WANG J, et al. Secure synchronization of stochastic complex networks subject to deception attack with nonidentical nodes and internal disturbance [J]. Information Sciences, 2021, 547: 514-525.
[12] HE W, QIAN F, HAN Q L, et al. Almost sure stability of nonlinear systems under random and impulsive sequential attacks [J]. IEEE Transactions on Automatic Control, 2020, 65(9): 3879-3886.
[13] ZHAO L, YANG G H. Cooperative adaptive fault-tolerant control for multi-agent systems with deception attacks [J]. Journal of the Franklin Institute, 2020, 357(6): 3419-3433.
[14] LI X M, ZHOU Q, LI P, et al. Event-triggered consensus control for multi-agent systems against false data-injection attacks [J]. IEEE Transactions on Cybernetics, 2019, 50(5): 1856-1866.
[15] HE W, GAO X, ZHONG W, et al. Secure impulsive synchronization control of multi-agent systems under deception attacks [J]. Information Sciences, 2018, 459: 354-368.
[16] DING D, WANG Z, HO D W C, et al. Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks [J]. IEEE Transactions on Cybernetics, 2016, 47(8): 1936-1947.
[17] MA L, WANG Z, YUAN Y. Consensus control for nonlinear multi-agent systems subject to deception attacks[C]//2016 22nd International Conference on Automation and Computing (ICAC). Colchester: IEEE, 2016: 21-26.
[18] 伍益明. 恶意攻击下的多智能体系统安全一致性问题研究[D]. 杭州: 浙江工业大学, 2016.
[19] 常盛. 考虑虚假数据攻击的电力信息物理系统检测方法研究[D]. 秦皇岛: 燕山大学, 2020.
[1] 谷志华, 彭世国, 黄昱嘉, 冯万典, 曾梓贤. 基于事件触发脉冲控制的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性研究[J]. 广东工业大学学报, 2023, 40(01): 50-55.
[2] 谢光强, 许浩然, 李杨, 陈广福. 基于多智能体强化学习的社交网络舆情增强一致性方法[J]. 广东工业大学学报, 2022, 39(06): 36-43.
[3] 曲燊, 车伟伟. FDI攻击下非线性多智能体系统分布式无模型自适应控制[J]. 广东工业大学学报, 2022, 39(05): 75-82.
[4] 刘建华, 李佳慧, 刘小斌, 穆树娟, 董宏丽. 事件触发机制下的多速率多智能体系统非脆弱一致性控制[J]. 广东工业大学学报, 2022, 39(05): 102-111.
[5] 谢光强, 赵俊伟, 李杨, 许浩然. 基于多集群系统的车辆协同换道控制[J]. 广东工业大学学报, 2021, 38(05): 1-9.
[6] 张弘烨, 彭世国. 基于模型简化法的含有随机时延的多智能体系统一致性研究[J]. 广东工业大学学报, 2019, 36(02): 86-90,96.
[7] 张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J]. 广东工业大学学报, 2018, 35(02): 75-80.
[8] 罗贺富, 彭世国. 多时变时滞的多智能体系统的分布式编队控制[J]. 广东工业大学学报, 2017, 34(04): 89-96.
[9] 唐平; 杨宜民;. 多智能体系统与足球机器人系统体系结构研究[J]. 广东工业大学学报, 2001, 18(4): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!