Journal of Guangdong University of Technology ›› 2018, Vol. 35 ›› Issue (04): 119-126.doi: 10.12052/gdutxb.170161

Previous Articles    

Effect of Ground Granulated Blast Furnace Slag on Properties Based on Analysis of Water Film Thickness Hypothesis

Wen Meng-dan, Chen Jia-jian, Gao Yu-shen, Ma An-min   

  1. Department of Civil Engineering, Foshan University, Foshan 528000, China
  • Received:2017-12-05 Online:2018-07-09 Published:2018-06-06
  • Supported by:
     

Abstract: To study the effect of ground granulated blast furnace slag (GGBS) on the flowability, cohesiveness and strength of cement paste, 30 mixes of cement paste samples with different water/cementitious material ratios and different GGBS contents were measured. To reveal the flowability mechanism of GGBS cement paste, the packing density of 5 different cementitious mixes with various GGBS content was measured. The water film thickness of each cement paste mix was calculated based on the packing density test, and the effect of water film thickness on the flowability of GGBS cement paste was discussed. Results demonstrated that addition of moderate GGBS could increase the flowability and compressive strength, but impair the cohesiveness. The best overall performance of cement paste occurs when 5% GGBS is added. The addition of GGBS had positive effect on packing density of cementitious materials. The water film thickness is the major governing factor of flowability of GGBS cement paste, and the flowability of cement paste increases with the increase of water film thickness.

Key words: flowing property, ground granulated blast furnace slag (GGBS), strength, water film thickness

CLC Number: 

  • TU528.52
[1] PAL S C, MUKHERJEE A, PATHAK S R. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete[J]. Cement and Concrete Research, 2003, 33(9):1481-1486.
[2] HAWILEH R, ABDALLA J, FARDMANESH F, et al. Performance of reinforced concrete beams cast with different percentages of GGBS replacement to cement[J]. Archives of Civil and Mechanical Engineering, 2017, 17(3):511-519.
[3] 王强, 黎梦圆, 石梦晓. 水泥-钢渣-矿渣复合胶凝材料的水化特性[J]. 硅酸盐学报, 2014, 42(5):629-634.WANG Q, LI M Y, SHI M X. Hydration properties of cement-steel slag-ground granulated blast furnace slag complex binder[J]. Journal of The Chinese Ceramic Society, 2014, 42(5):629-634.
[4] 李胜男. 掺矿渣粉混凝土的架构理论研究[D]. 大连:大连理工大学建筑与土木工程学院, 2013.
[5] 杨文武, 钱觉时, 范英儒. 磨细高炉矿渣对海工混凝土抗冻性和氯离子扩散性能的影响[J]. 硅酸盐学报, 2009, 37(1):29-34.YANG W W, QIAN J S, FAN Y R. Effect of ground granulated blast furnace slag on both frost-resistance and chloride ions diffusion properties of marine concrete[J]. Journal of The Chinese Ceramic Society, 2009, 37(1):29-34.
[6] 张武满, 巴恒静. 磨细高炉矿渣和硅灰对重复荷载作用下混凝土氯离子透过性的影响[J]. 中国科学:技术科学, 2012, 42(12):1449-1455.ZHANG W M, BA H J. Effect of ground granulated blast-furnace slag (GGBFS) and silica fume (SF) on chloride migration through concrete subjected to repeated loading[J]. Science China Technology Science, 2012, 42(12):1449-1455.
[7] 李建勇, 姚燕, 田培. 利用超细矿渣和硅灰配制高性能混凝土的研究[J]. 混凝土, 1997,(4):12-22. 1997,(4):12-22.
[8] 朱江. 聚丙烯纤维在高性能混凝土中的应用[J]. 广东工业大学学报, 2000, 17(3):15-18.ZHU J, The application of polypropylene fiber in high performance concrete[J]. The application of polypropylene fiber in high performance concrete[J]. Journal of Guangdong University of Technology, 2000, 17(3):15-18.
[9] 罗金, 余本胜, 查进. 磨细矿渣配制大体积混凝土和高强混凝土的试验研究[J]. 煤炭工程, 2006,(1):78-81.LUO J, YU B S, ZHA J. Research on test of large volume concrete and high concrete with fine ground slag[J]. Coal Engineering, 2006,(1):78-81.
[10] 刘仍光. 水泥-矿渣复合胶凝材料的水化机理与长期性能[D]. 北京:清华大学土木工程学院, 2013.
[11] 刘仍光, 阎培渝. 水泥-矿渣复合胶凝材料中矿渣的水化特性[J]. 硅酸盐学报, 2012, 40(8):1112-1118.LIU R G, YAN P Y. Hydration characteristics of slag in cement-slag complex binder[J]. Journal of The Chinese Ceramic Society, 2012, 40(8):1112-1118.
[12] 姚立红, 李瑞林, 刘生超, 等. 水泥净浆流动度与混凝土流动性能相关性研究[J]. 水泥工程, 2016,(6):20-21. 2016,(6):20-21.
[13] 武斌. 水泥净浆和砂浆流动度与混凝土流变性能相关性试验[J]. 广东建材, 2016, 32(9):63-65. 2016, 32(9):63-65.
[14] AITCIN P C. High-performance Concrete[M].London (UK):E & FN Spon, 1998.
[15] OKAMURA H, OUNCJI M. Self-compacting concrete[J]. Journal of Advanced Concrete Technology, 2003, 1(1):5-15.
[16] British Standards Institution. BS EN 445:Grout for Prestressing Tendons-Test Methods[M]. London (UK):BSI, 1997.
[17] 陈嘉健, 雷元新, 徐畏婷, 等. 水泥浆水膜厚度的计算及在流动性中的影响[J]. 佛山科学技术学院学报(自然科学版), 2014, 32(3):49-56.CHEN J J, LEI Y X, XU W T, et al. Calculation of water film thickness and the effects on rheology[J]. Journal of Foshan University (Natural Science Edition), 2014, 32(3):49-56.
[1] Wei Wei, Xiong Zhe. An Experimental Study of the Anchorage Length of FRP Bars and Concrete [J]. Journal of Guangdong University of Technology, 2020, 37(03): 101-105.
[2] Liang Shi-hua, Chen Jun-tao, Lin Huan-sheng, Feng De-luan, Gong Xing, Luo Qing-zi. An Experimental Study of Using Cement Stabilized Silt as Filling Material [J]. Journal of Guangdong University of Technology, 2020, 37(02): 102-106.
[3] Liang Shi-hua, Zhou Jin-cheng, Luo Qi, Lin Huan-sheng. An Experimental Research on the Effect of Organic Matter on Mechanical Properties of Cementing Solidified Silt [J]. Journal of Guangdong University of Technology, 2019, 36(06): 86-91.
[4] Liu Ya-dong, Yang Xue-qiang, Xu Lei, Lin Yao-kang, Gong Xing. A Stability Analysis of Slope Considering Strength Anisotropy in Soils [J]. Journal of Guangdong University of Technology, 2018, 35(06): 57-62.
[5] Liang Shi-hua, Luo Qi, Wang Meng, Liu Yong-jian, Yin Ying-mei, Jiang Zhi-yuan. An Experimental Study of Nansha Zinc Contaminated Sludge Solidification with Cement and Lime [J]. Journal of Guangdong University of Technology, 2017, 34(05): 80-85.
[6] ZENG Bi, MAO Qin. A Research on Algorithm of Building Wi-Fi Location Fingerprint Database [J]. Journal of Guangdong University of Technology, 2016, 33(02): 51-56.
[7] LIU Yan-Long, YUAN Ling, JIANG Wen-Chao, LI Dong-Ming, WANG Duo-Qiang. Parallel Mechanism Research and Application of Calculix in Ship Fatigue Analysis Environments [J]. Journal of Guangdong University of Technology, 2015, 32(04): 77-82.
[8] LIN Xin-Da, LIN Sui, JIANG Wen-Chao, LI Dong-Ming, WANG Duo-Qiang. The Parallel Optimization of Preconditioning for the Finite Element Solution Calculix [J]. Journal of Guangdong University of Technology, 2015, 32(04): 138-144.
[9] LU Zhi-Qiang, LI De-Yuan, Luca Diviani. Strength Analysis of TSCB Pedestrian Bridges Based on Tsai-Wu Failure Criteria [J]. Journal of Guangdong University of Technology, 2014, 31(1): 101-106.
[10] Yang Xue-qiang1,Ling Ping-ping2,Yang Rui1,Chen Gui-lin3 . Two and Three-dimensional Stability Analyses of Slopes with Local Load on Top Surface(Ⅰ)——Using Strength Reduction Finite Element Method [J]. Journal of Guangdong University of Technology, 2008, 25(4): 86-93.
[11] YANG Xue-qiang1,GONG Quan-mei2,LI Zhang-ming1. Physical Explanations for Three Types of Failure Criteria [J]. Journal of Guangdong University of Technology, 2007, 24(03): 76-83.
[12] GUO Yong-chang. Experimental Study on Flexural Strength of RC Beams Strengthened with Carbon/Aramid Fiber Sheet [J]. Journal of Guangdong University of Technology, 2006, 23(3): 54-57.
[13] LUO Zhi-qiang. Influence Analysis of Porosity in Asphalt Pavement on Project Quality [J]. Journal of Guangdong University of Technology, 2006, 23(1): 36-40.
[14] GUO Yong-chang~(1),XIE Zhi-hong~(2). Effects of Length of CFS on Flexural Behavior for RC Beam [J]. Journal of Guangdong University of Technology, 2005, 22(2): 89-95.
[15] LI Ming-qing,ZHOU Chang-ren. Preparation of Pressure-sensitive Adhesive Used for Polyethylene Film [J]. Journal of Guangdong University of Technology, 2005, 22(2): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!