Journal of Guangdong University of Technology ›› 2020, Vol. 37 ›› Issue (01): 42-47.doi: 10.12052/gdutxb.190051

Previous Articles     Next Articles

Synthesis of BiFeO3: Y3+ Nanostructure by Sol-gel Method and Their Photocatalytic Activity

Wang Jia-xi, Luo Li, Yun Rui, Li Xiao-fen, Wang Yin-hai, Zhang Wei   

  1. School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-04-08 Online:2020-01-25 Published:2019-12-10

Abstract: Multi-functional ferroelectric materials are the major topic of discussion in recent years. In order to study the photocatalytic property of ferroelectric materials, BiFeO3 and Bi1-xYxFeO3 nanostructure were prepared by sol-gel method. The crystal structure, morphology, chemical composition and other physiochemical properties of the samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). In addition, the ultraviolet-visible spectrophotometer and photochemical reactions instrument were applied to study the absorption and the photocatalytic property of the samples. The results show that doping of Y3+ can reduce the grain size and the forbidden band gap without changing the lattice structure. Also, according to the fitting analysis of XPS narrow spectrum of O 1s, it is found that the content of oxygen vacancies were increased after Y3+ doping. The oxygen vacancies can reduce the recombination rate of hole-electron pairs so that the utilization of carriers is improved. Therefore, the doping of Y3+ can increase the photocatalytic efficiency of BiFeO3, and it can be a promising photocatalytic material.

Key words: ferroelectric materials, photocatalytic, X-ray photoelectron spectroscopy (XPS)

CLC Number: 

  • O483
[1] TEE S Y, WIN K Y, TEO W S, et al. Recent progress in energy-driven water splitting[J]. Advanced Science, 2017, 4(5):1600337
[2] ZHOU X, SHAO C, LI X, et al. Three dimensional hierarchical heterostructures of g-C3N4 nanosheets/TiO2 nanofibers:controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light[J]. Journal of Hazardous Materials, 2018, 344(15):113-122
[3] MALLIKARJUNA K, KUMAR M K, REDDY B V S, et al. Hydrogen production from water splitting:fabrication of ZnO nanorod decorated Cu NW heterogeneous hybrid structures for photocatalytic applications[J]. Journal of Cluster Science, 2019, 30(2):449-457
[4] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37
[5] 傅李鹏, 张国庆, 杨承昭. 负载TiO2工程化光催化水处理器降解活性黑GR实验研究[J]. 广东工业大学学报, 2010, 27(1):28-32
FU L P, ZHANG G Q, YANG C Z. Degradation of reactive black dye GR in engineering photocatalytic reactors coated with TiO2[J]. Journal of Guangdong University of Technology, 2010, 27(1):28-32
[6] 吕松, 孙英杰, 袁斌, 等. 焦炭负载TiO2光催化降解阳离子艳红染料废水的研究[J]. 广东工业大学学报, 2007, 24(2):11-14
LYU S, SUN Y J, YUAN B, et al. Study of photo-catalytic degradation of cationic brilliant red 5GN solution by TiO2/coke[J]. Journal of Guangdong University of Technology, 2007, 24(2):11-14
[7] LEI C, XIANG Q, LIAO Y, et al. CdS-based photocatalysts[J]. Energ Environ Sci, 2018, 11(6):1362-1391
[8] WU Y, WANG H, TU W, et al. Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect[J]. J Hazard Mater, 2018, 347(5):412-422
[9] 袁笑一, 周勤. 纳米二氧化钛在水中的环境行为[J]. 广东工业大学学报, 2005, 22(3):17-20
YUAN X Y, ZHOU Q. The Environmental behavior of nano-sized TiO2 in water source[J]. Journal of Guangdong University of Technology, 2005, 22(3):17-20
[10] 邓敏霖, 刘秋香, 李万朋. 不同退火气氛下Bi2NiMnO6薄膜的铁电性能和漏电流研究[J]. 广东工业大学学报, 2015, 32(4):21-24
DENG M L, LIU Q X, LI W P. Influence of annealing atmosphere on the ferroelectric and leakage current behavior of Bi2 NiMnO6 thin films[J]. Journal of Guangdong University of Technology, 2015, 32(4):21-24
[11] 王一光, 丁南, 唐新桂. Ba(Zr0.06Ti0.94)O3-BiFeO3复合陶瓷的介电、铁电及压电性能研究[J]. 广东工业大学学报, 2014, 31(4):109-114
WANG Y G, DING N, TANG X G. Dielectric, ferroelectric and piezoelectric properties of the Ba(Zr0.06Ti0.94) O3-BiFeO3 composite ceramics[J]. Journal of Guangdong University of Technology, 2014, 31(4):109-114
[12] 李万朋, 刘秋香. SrBi2Ta2O9/LaNiO3异质结薄膜的铁电、磁性能及漏电流研究[J]. 广东工业大学学报, 2014, 31(2):117-120
LI W P, LIU Q X. Ferroelectric, magnetic properties and leakage currents of SrBi2Ta2O9/LaNiO3 heterostructure thin films[J]. Journal of Guangdong University of Technology, 2014, 31(2):117-120
[13] WANG Q, GUO Q, WANG L, et al. The flux growth of single-crystalline CoTiO3 polyhedral particles and improved visible-light photocatalytic activity of heterostructured CoTiO3/gC3N4 composites[J]. Dalton T, 2016, 45(44):17748-17758
[14] SAKAR M, BALAKUMAR S, SARAVANAN P, et al. Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method[J]. Mater Res Bull, 2013, 48(8):2878-2885
[15] CONG Y, ZHANG J, CHEN F, et al. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity[J]. J Phys Chem C, 2007, 111(19):6976-6982
[16] ANSARI S A, KHAN M M, KALATHIL S, et al. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm[J]. Nanoscale, 2013, 5(19):9238-9246
[17] MURALI A, SOHN H Y. Photocatalytic properties of plasma-synthesized aluminum-doped zinc oxide nanopowder[J]. J Nanosci Nanotechno, 2019, 19(8):4377-4386
[18] JI S, CHANG I, LEE Y H, et al. Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition[J]. Nanoscale Research Letters, 2013, 8(1):48
[1] Long Hui, Wei Zi-qiao, Luo Si-yao, Dong Hua-feng, Chen Chuan-sheng. In2Se3 Sheets as Photosensitizers to Enhance the Photocatalytic Performance of Graphene Oxide/WS2/Mg-doped ZnO Composite under Natural Sunlight [J]. Journal of Guangdong University of Technology, 2022, 39(04): 107-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!