Journal of Guangdong University of Technology ›› 2020, Vol. 37 ›› Issue (06): 26-31.doi: 10.12052/gdutxb.200011
Previous Articles Next Articles
Xia Hao1, Cai Nian1, Wang Ping2, Wang Han3
CLC Number:
[1] SHI F, CHENG J, WANG L, et al. LRTV: MR image super-resolution with low-rank and total variation regularizations [J]. IEEE Transactions on Medical Imaging, 2015, 34(12): 2459-2466. [2] PLENGE E, POOT D H J, BERNSEN M, et al. Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? [J]. Magnetic Resonance in Medicine, 2012, 68(6): 1983-1993. [3] WU J, CAI N, LI F, et al. Automatic detonator code recognition via deep neural network [J]. Expert Systems with Applications, 2020, 145: 113121. [4] FU X, CAI N, HUANG K, et al. M-net: a novel u-net with multi-stream feature fusion and multi-scale dilated convolutions for bile ducts and hepatolith segmentation [J]. IEEE Access, 2019, 7: 148645-148657. [5] WU J, CAI N, CHEN W, et al. Automatic detection of hardhats worn by construction personnel: a deep learning approach and benchmark dataset [J]. Automation in Construction, 2019, 106: 102894. [6] 翁韶伟, 彭一航, 危博, 等. 基于Inception-V3网络的双阶段数字视频篡改检测算法[J]. 广东工业大学学报, 2019, 36(6): 16-23. WENG S W, PENG Y H, WEI B, et al. A two-stage-video forgery based on inception-v3 network [J]. Journal of Guangdong University of Technology, 2019, 36(6): 16-23. [7] 高俊艳, 刘文印, 杨振国. 结合注意力与特征融合的目标跟踪[J]. 广东工业大学学报, 2019, 36(4): 18-23. GAO J Y, LIU W Y, YANG Z G. Object tracking combined with attention and feature fusion [J]. Journal of Guangdong University of Technology, 2019, 36(4): 18-23. [8] 叶武剑, 高海健, 翁韶伟, 等. 基于CGAN网络的二阶段式艺术字体渲染方法[J]. 广东工业大学学报, 2019, 36(3): 47-55. YE W J, GAO H J, WENG S W, et al. A two-stage effect rendering method for art font based on CGAN network [J]. Journal of Guangdong University of Technology, 2019, 36(3): 47-55. [9] HARIS M, SHAKHNAROVICH G, UKITA N. Deep back-projection networks for super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1664-1673. [10] PHAM C H, DUCOURNAU A, FABLET R, et al. Brain MRI super-resolution using deep 3D convolutional networks[C]//2017 IEEE 14th International Symposium on Biomedical Imaging. Melbourne: IEEE, 2017: 197-200. [11] DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision. Amsterdam: Springer, Cham, 2014: 184-199. [12] DONG C, LOY CC, HE K, et al. Image super-resolution using deep convolutional networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307. [13] OKTAY O, BAI W, LEE M, et al. Multi-input cardiac image super-resolution using convolutional neural networks[C]//International Conference on Medical Image Computing and Computer-assisted Intervention. Istanbul: Springer, Cham, 2016: 246-254. [14] GIANNAKIDIS A, OKTAY A O, KEEGAN J. Super-resolution reconstruction of late gadolinium cardiovascular magnetic resonance images using a residual convolutional neural network 25th Scientific Meeting of the Int[C]//International Society for Magnetic Resonance in Medicine. Hawaii: [s.n.], 2017. [15] KIM J, KWON LEE J, MU LEE K. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1646-1654. [16] SHI J, LI Z, YING S, et al. MR image super-resolution via wide residual networks with fixed skip connection [J]. IEEE Journal of Biomedical and Health Informatics, 2018, 23(3): 1129-1140. [17] MCDONAGH S, HOU B, ALANSARY A, et al. Context-sensitive super-resolution for fast fetal magnetic resonance imaging[C]//Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment. Canada: Springer, Cham, 2017: 116-126. [18] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//European Conference on Computer Vision. Amsterdam: Springer, Cham, 2016: 391-407. [19] TANNO R, WORRALL D E, GHOSH A, et al. Bayesian image quality transfer with CNNs: exploring uncertainty in dMRI super-resolution[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Istanbul: Springer, Cham, 2017: 611-619. [20] SHI W, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874-1883. [21] TAI Y, YANG J, LIU X. Image super-resolution via deep recursive residual network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 3147-3155. [22] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [23] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. [24] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: Surpassing human-level performance on image net classification[C]//Proceedings of the IEEE International Conference on Computer Vision. Boston: IEEE, 2015: 1026-1034. |
[1] | Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21. |
[2] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8. |
[3] | Huang Jian-hang, Wang Zhen-you. A Research on Deep Learning Object Detection Algorithm Based on Feature Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(04): 52-58. |
[4] | Ma Shao-peng, Liang Lu, Teng Shao-hua. A Lightweight Hyperspectral Remote Sensing Image Classification Method [J]. Journal of Guangdong University of Technology, 2021, 38(03): 29-35. |
[5] | Zhan Yin-wei, Zhu Bai-wan, Yang Zhuo. Research and Application of Vehicle Color and Model Recognition Algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(04): 9-14. |
[6] | Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17. |
[7] | Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37. |
[8] | Chen Xu, Zhang Jun, Chen Wen-wei, Li Shuo-hao. Convolutional Neural Network Algorithm and Case [J]. Journal of Guangdong University of Technology, 2017, 34(06): 20-26. |
[9] | Ye Xiang-rong, Liu Yi-jun, Chen Yun-hua, Xiong Jiong-tao. A Super-resolution Image Reconstruction Algorithm with Adaptive L1/2 Sparse Regularization [J]. Journal of Guangdong University of Technology, 2017, 34(06): 43-48. |
[10] | SHEN Xiao-Min, LI Bao-Jun, SUN Xu, XU Wei-Chao. Large Scale Face Clustering Based on Convolutional Neural Network [J]. Journal of Guangdong University of Technology, 2016, 33(06): 77-84. |
|