Journal of Guangdong University of Technology ›› 2020, Vol. 37 ›› Issue (04): 9-14.doi: 10.12052/gdutxb.200051
Previous Articles Next Articles
Zhan Yin-wei, Zhu Bai-wan, Yang Zhuo
CLC Number:
[1] 邓柳. 基于深度卷积神经网络的车型识别[D]. 成都: 西南交通大学, 2015. [2] REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE Computer Society, 2018: 89-95. [3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedi ng of the 3rd International Conference on Learning Representations. SanDiego: ICLR, 2015: 1409-1556. [4] 陈旭, 张军, 陈文伟, 等. 卷积网络深度学习算法与实例[J]. 广东工业大学学报, 2017, 34(6): 20-26 CHEN X, ZHANG J, CHEN W W, et al. Convolutional neural network algorithm and case [J]. Journal of Guangdong University of Technology, 2017, 34(6): 20-26 [5] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//26th Annual Conference on Neural Information Processing Systems. Lake Tahoe: Neur al Information Processing System Foundation, 2012: 1097-1105. [6] HEK, ZHANG X, REN S, et al. Deep residual learning for imagerecognition[C]//2016 IEEE Conference on Compute rVision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 770-778. [7] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolueons[C]//2015 IEEE Conference on Computer Visi onand Pattern Recognition. Boston: IEEE Computer Society, 2015: 1-9. [8] HowarD A G, ZHU M, CHEN B, et al. Mobile Nets: efficient convolutional neural networks for mobile vision applications [J]. arXiv preprint, 2017, 32(9): 100-108 [9] 尹宏鹏, 陈波, 柴毅, 等. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016, 42(10): 1466-1489 YIN H P, CHEN B, CHAI Y, et al. Vision-based object detection and tracking: a review [J]. Acta Automatica Sinica, 2016, 42(10): 1466-1489 [10] 李旭冬, 叶茂, 李涛. 基于卷积神经网络的目标检测研究综述[J]. 计算机应用研究, 2017, 34(10): 2881-2886 LI X D, YE M, LI T. Review of object detection based on convolutional neural networks [J]. Application of Computer Research, 2017, 34(10): 2881-2886 [11] LAOPRACHA N, SUNAT K. Comparative study of computational time that HOG-Based features used forvehicle detection[C]//2017 International Conference on Computing and Information Technology. Helsinki: IEEE Computer Society, 2017: 275-284. [12] El-KHOREBY MOHAMED, ABU-BAKAR SYED. Vehicle detection and counting for complex weather conditions[C]//2017 IEEE International Conference on Signal and Image Processing Applications. Beijing: IEEE Computer Society, 2017: 425-428. [13] MAQBOOL S, KHAN M, TAHIR J, et al. Vehicle Detection, Tracking and Counting[C]// 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP). Shenzhen: IEEE, 2018: 126-132. [14] 张红兵, 李海林, 黄晓婷, 等. 基于车前脸HOG特征的车型识别方法研究与实现[J]. 计算机仿真, 2015, 32(12): 119-123 ZHANG H B, LI H L, HUANG X T, et al. Research and implementation of vehicle-type recognition method based on HOG features of vehicle frontal face [J]. Computer Simulation, 2015, 32(12): 119-123 [15] PAN C, SUN M, YANZ. The study on vehicle detection based on DPM in traffic scenes[C]//2016 International Conference on Frontier Computing. Tokyo: FC, 2016: 19-27. [16] SANG J, GUO P, XIANGZ, et al. Vehicle detection based on faster-RCNN [J]. Journal of Chongqing University, 2017, 40(7): 32-36 [17] 张鹏, 陈湘军, 阮雅端, 等. 采用稀疏SIFT特征的车型识别方法[J]. 西安交通大学学报, 2015, 49(12): 137-143 ZHANG P, CHEN X J, RUAN Y D, et al. A vehicle classification technique based on sparse coding [J]. Journal of Xi'an Jiaotong University, 2015, 49(12): 137-143 [18] 贾晓. 套牌车辆的车型识别与检索技术研究[D]. 大连: 大连海事大学, 2016. [19] TANG Y, ZHANG C Z, GU R S, et al. Vehicle detection and recognition for intelligent traffic surveillance system [J]. Multimedia Tools & Applications, 2017, 76(4): 5817-5832 [20] 李慧, 利齐律, 程良伦, 等. 基于多颜色空间卷积神经网络的车辆颜色分类[J]. 工业控制计算机, 2019, 32(11): 78-82 LI H, LI Q L, CHENG L L, et al. Convolutional neural network based on multi-color space for vehicle color classification [J]. Industrial Control Computer, 2019, 32(11): 78-82 [21] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 779-788. [22] 陈正斌, 叶东毅, 朱彩霞, 等. 基于改进YOLOv3的目标识别方法[J]. 计算机系统应用, 2020, 29(1): 49-58 CHEN Z B, YE D Y, ZHU C X, et al. Object recognition method based on improved YOLOv3 [J]. Computer Systems and Applications, 2020, 29(1): 49-58 [23] YAN K, TIAN Y, WANG Y, et al. Exploiting multi-grain ranking constraints for precisely searching visually-similar vehicles[C]//2017 IEEE Conference on Computer Vision. Venice: IEEE, 2017: 562-570. [24] PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library[C]//33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Vancouver: Curran Associates, 2019: 8024-8035. |
[1] | Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21. |
[2] | Chen Jing-yu, Lyu Yi. Frost Detection Method of Cold Chain Refrigerating Machine Based on Spiking Neural Network [J]. Journal of Guangdong University of Technology, 2023, 40(01): 29-38. |
[3] | Ye Wen-quan, Li Si, Ling Jie. Sparse-view SPECT Image Reconstruction Based on Multilevel-residual U-Net [J]. Journal of Guangdong University of Technology, 2023, 40(01): 61-67. |
[4] | Zou Heng, Gao Jun-li, Zhang Shu-wen, Song Hai-tao. Design and Implementation of a Dropping Guidance Device for Go Robot [J]. Journal of Guangdong University of Technology, 2023, 40(01): 77-82,91. |
[5] | Xie Guang-qiang, Xu Hao-ran, Li Yang, Chen Guang-fu. Consensus Opinion Enhancement in Social Network with Multi-agent Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2022, 39(06): 36-43. |
[6] | Liu Xin-hong, Su Cheng-yue, Chen Jing, Xu Sheng, Luo Wen-jun, Li Yi-hong, Liu Ba. Real Time Detection of High Resolution Bridge Crack Image [J]. Journal of Guangdong University of Technology, 2022, 39(06): 73-79. |
[7] | Xiong Wu, Liu Yi. Application of Particle Filter Algorithm in Static Deformation Monitoring of BDS High-Speed Rail [J]. Journal of Guangdong University of Technology, 2022, 39(04): 66-72. |
[8] | Yi Min-qi, Liu Hong-wei, Gao Hong-ming. Research on the Factors Influencing the Co-purchase Network of Products on E-commerce Platforms [J]. Journal of Guangdong University of Technology, 2022, 39(03): 16-24. |
[9] | Qiu Zhan-chun, Fei Lun-ke, Teng Shao-hua, Zhang Wei. Palmprint Recognition Based on Cosine Similarity [J]. Journal of Guangdong University of Technology, 2022, 39(03): 55-62. |
[10] | Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61. |
[11] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8. |
[12] | Li Guang-cheng, Zhao Qing-lin, Xie Kan. A Design of Decentralized Data Processing Scheme [J]. Journal of Guangdong University of Technology, 2021, 38(06): 77-83. |
[13] | Xie Guang-qiang, Zhao Jun-wei, Li Yang, Xu Hao-ran. Cooperative Lane-changing Based on Multi-cluster System [J]. Journal of Guangdong University of Technology, 2021, 38(05): 1-9. |
[14] | Zhang Wei, Zhang Zhen-bin. Joint Graph Embedding and Feature Weighting for Unsupervised Feature Selection [J]. Journal of Guangdong University of Technology, 2021, 38(05): 16-23. |
[15] | Deng Jie-hang, Yuan Zhong-ming, Lin Hao-run, Gu Guo-sheng. Superpixel and Visual Saliency Synergetic Image Quality Assessment [J]. Journal of Guangdong University of Technology, 2021, 38(05): 33-39. |
|