Journal of Guangdong University of Technology ›› 2018, Vol. 35 ›› Issue (05): 31-37.doi: 10.12052/gdutxb.180068
Previous Articles Next Articles
Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin
CLC Number:
[1] BAILEY T, DURRANT-WHYTE H. Simultaneous localization and papping:part I[J]. IEEE Robotics & Automation Magazine, 2006, 13(2):99-110 [2] WANG H, Hou Z, CHENG L, TAN M. Online mapping with a mobile robot in dynamic and unknown environments[J]. International Journal of Modelling Identification & Control, 2008, 4(4):415-423 [3] FILLIAT D. A visual bag of words method for interactive qualitative localization and mapping[C]//Robotics and Automation, IEEE International Conference. Roma:IEEE, 2007:3921-3926. [4] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110 [5] BAY H, TUYTELAARS T, GOOL L. SURF:Speeded up robust features BT-Computer Vision-ECCV 2006[J]. Computer Vision-ECCV, 2006, 3951:404-417 [6] RUBLEE E, RABAUD V, KONOLIGE K. Orb:an efficient alternative to sift or surf[C]//Computer Vision, IEEE International Conference. Barcelona, Spain:IEEE, 2011:2564-2571. [7] CUMMINS M, NEWMAN P. Highly scalable appearance-only SLAM-FAB-MAP 2.0[M]//Proceedings of Robotics:Science and Systems. Seattle, 2009:1-8. [8] CUMMINS M, NEWMAN P. FAB-MAP:Probabilistic localization and mapping in the space of appearance[J]. International Journal of Robotics Research, 2008, 27(6):647-665 [9] LIU Y, ZHANG H. Visual loop closure detection with a compact image descriptor[J]. IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve, Portugal:IEEE, 2012:1051-1056. [10] GAO X, ZHANG T. Unsupervised learning to detect loops using deep neural networks for visual SLAM system[J]. Autonomous Robots, 2017, 41(1):1-18 [11] GAO X, ZHANG T. Loop closure detection for visual slam systems using deep neural networks[C]//Technical commitee on control theory, Chinese control conference. Hangzhou:Chinese Association of Automation, 2015:5851-5856. [12] CHATFIELD K, SIMONYAN K, VEDALDI A, et al. Return of the devil in the details:delving deep into convolutional nets[J]. Computer Science, 2014:1-11 [13] WAN J, WANG D Y. Deep learning for content-based image retrieval:a comprehensive study[C]//Multimedia, ACM International Conference. Istanbul:ACM, 2014:157-166. [14] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Internationl Conference on Neural Information Processing. Doha, Qatar:ACM, 2012, 60(2):1097-1105. [15] BABENKO A, SLESAREV A, CHIGORIN A. Neural codes for image retrieval[C]//Computer Vision, European Conference. Zurich:Springer, 2014:584-599. [16] 何元烈, 陈佳腾, 曾碧. 基于精简卷积神经网络的快速闭环检测方法[J]. 计算机工程, 2018,44(6):182-187. HE Y L, CHEN J T, ZENG B. A fast loop closure detection method based on lightweight convolutional neural network[J]. Computer Engineering, 2018, 44(6):182-187. [17] XIA Y, LI J, QI L, et al. Loop closure detection for visual SLAM using PCANet features[C]//Neural Networks, IEEE International Joint Conference. Vancouver, Canada:IEEE, 2016:2274-2281. [18] HOU Y, ZHANG H, ZHOU S. Convolutional neural network-based image representation for visual loop closure detection[C]//Information and Automation, IEEE International Conference. Lijiang, China:IEEE, 2015:2238-2245. [19] JIA Y Q, SHELHAMER E, JEFF D. Caffe:convolutional architecture for fast feature embedding[C]//Multimedia, ACM International Conference. Istanbul:ACM, 2014:675-678. [20] SHANG W, SOHN K, ALMEIDA D, et al. Understanding and improving convolutional neural networks via concatenated rectified linear units[C]//Machine Learning, IEEE International Conference. New York:IEEE, 2016:1-17. [21] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Places:An image database for deep scene understanding[J]. Journal of Vision, 2016, 17(10):1-12 |
[1] | Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21. |
[2] | Liu Dong-ning, Wang Zi-qi, Zeng Yan-jiao, Wen Fu-yan, Wang Yang. Prediction Method of Gene Methylation Sites Based on LSTM with Compound Coding Characteristics [J]. Journal of Guangdong University of Technology, 2023, 40(01): 1-9. |
[3] | Xu Wei-feng, Cai Shu-ting, Xiong Xiao-ming. Visual Inertial Odometry Based on Deep Features [J]. Journal of Guangdong University of Technology, 2023, 40(01): 56-60,76. |
[4] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
[5] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8. |
[6] | Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61. |
[7] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8. |
[8] | Huang Jian-hang, Wang Zhen-you. A Research on Deep Learning Object Detection Algorithm Based on Feature Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(04): 52-58. |
[9] | Lai Jun, Liu Zhen-yu, Liu Sheng-hai. A Small Sample Data Prediction Method Based on Global Data Shuffling [J]. Journal of Guangdong University of Technology, 2021, 38(03): 17-21. |
[10] | Ma Shao-peng, Liang Lu, Teng Shao-hua. A Lightweight Hyperspectral Remote Sensing Image Classification Method [J]. Journal of Guangdong University of Technology, 2021, 38(03): 29-35. |
[11] | Xia Hao, Cai Nian, Wang Ping, Wang Han. Magnetic Resonance Image Super-Resolution via Multi-Resolution Learning [J]. Journal of Guangdong University of Technology, 2020, 37(06): 26-31. |
[12] | Cen Shi-jie, He Yuan-lie, Chen Xiao-cong. A Monocular Depth Estimation Combined with Attention and Unsupervised Deep Learning [J]. Journal of Guangdong University of Technology, 2020, 37(04): 35-41. |
[13] | Zhan Yin-wei, Zhu Bai-wan, Yang Zhuo. Research and Application of Vehicle Color and Model Recognition Algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(04): 9-14. |
[14] | Jiang Sheng-fu, Wang Xin, Zhao Bing-chun. CFD Scaled-down Modelling of Neutral Atmospheric Flow [J]. Journal of Guangdong University of Technology, 2019, 36(06): 105-110. |
[15] | Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17. |
|