Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (01): 89-96.doi: 10.12052/gdutxb.200132
• Comprehensive Studies • Previous Articles Next Articles
Wen Wei-qiu, Guo Jian-wei
CLC Number:
[1] SHI J, KANTOFF P W, WOOSTER R, et al. Cancer nanomedicine: progress, challenges and opportunities [J]. Nature Reviews Cancer, 2017, 17: 20-37. [2] WICKI A, WITZIGMANN D, BALASUBRAMANIAN V, et al. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications [J]. Journal of Control Release, 2015, 200: 138-57. [3] LI Y, LU H, LIANG S, et al. Dual stable nanomedicines prepared by cisplatin-crosslinked camptothecin prodrug micelles for effective drug delivery [J]. ACS Applied Materials & Interfaces, 2019, 11(23): 20649-20659. [4] CHEN Z, LIU W, ZHAO L, et al. Acid-labile degradation of injectable fiber fragments to release bioreducible micelles for targeted cancer therapy [J]. Biomacromolecules, 2018, 19: 1100-1110. [5] 羊惠燕, 郭建维. 星状pH响应聚合物及其自组装胶束研究[J]. 广东工业大学学报, 2019, 36(1): 81-86. YANG H Y, GUO J W. A study of star pH-responsive polymer and its self-assembled micelles [J]. Journal of Guangdong University of Technology, 2019, 36(1): 81-86. [6] FENG J J, WEN W Q, JIA Y G, et al. pH-responsive micelles assembled by three-armed degradable block copolymers with a cholic acid core for drug controlled-release [J]. Polymers, 2019, 11(3): 511. [7] SONG X, WEN Y T, ZHU J L, et al. Thermoresponsive delivery of paclitaxel by β-cyclodextrin-based poly(N-isopropylacrylamide) star polymer via inclusion complexation [J]. Biomacromolecules, 2016, 12: 2957-3963. [8] SONG X, ZHU J L, WEN Y T, et al. Thermoresponsive supramolecular micellar drug delivery system based on star-linear pseudo-block polymer consisting of β-cyclodextrin-poly (N-isopropylacrylamide) and adamantyl-poly(ethylene glycol) [J]. Journal of Colloid and Interface Science, 2017, 490: 372-379. [9] SHI X, HOU M, MA X, et al. Starburst diblock polyprodrugs: reduction-responsive unimolecular micelles with high drug loading and robust micellar stability for programmed delivery of anticancer drugs [J]. Biomacromolecules, 2019, 20: 1190-1202. [10] LI M, GUO J W, WEN W Q, et al. Biodegradable redox-sensitive star polymer nanomicelles for enhancing doxorubicin delivery [J]. Nanomaterials, 2019, 9(4): 547. [11] QU J, PENG S, WANG R, et al. Stepwise pH-sensitive and biodegradable polypeptide hybrid micelles for enhanced cellular internalization and efficient nuclear drug delivery [J]. Colloids and Surfaces B Biointerfaces, 2019, 181: 315-324. [12] XU Z, XUE P, GAO Y E, et al. pH-responsive polymeric micelles based on poly (ethyleneglycol)-b-poly(2-(diisopropylamino) ethyl methacrylate) block copolymer for enhanced intracellular release of anticancer drugs [J]. Journal of Colloid and Interface Science, 2017, 490: 511-519. [13] LIN W J, YAO N, QIAN L, et al. pH-responsive unimolecular micelle-gold nanoparticles-drug nanohybrid system for cancer theranostics [J]. Acta Biomaterialia, 2017, 58: 455-465. [14] GUO X, SHI C L, YANG G. Dual-responsive polymer micelles for target-cell-specific anticancer drug delivery [J]. Chemistry of Materials, 2014, 26: 4405-4418. [15] MAO J, YANG L, WU T, et al. A simple dual-pH responsive prodrug-based polymeric micelles for drug delivery [J]. ACS Applied Materials & Interfaces, 2016, 8: 17109-17117. [16] ENGLERT J C, BRENDEL T C, MAJDANSKI T, et al. Pharmapolymers in the 21st century: synthetic polymers in drug delivery applications [J]. Progress in Polymer Science, 2018, 87: 107-164. [17] WANG G, ZHANG L. Synthesis, self-assembly and pH sensitivity of PDEAEMA–PEG–PDEAEMA triblock copolymer micelles for drug delivery [J]. Reactive & Functional Polymers, 2016, 107: 1-10. [18] YANG C F, XIAO J Y, XIAO W, et al. Fabrication of PDEAEMA-based pH-responsive mixed micelles for application in controlled doxorubicin release [J]. RSC Advances, 2017, 7(44): 27564-27573. [19] YU L, XIE M, LI Z, et al. Facile construction of near-monodisperse and dual responsive polycarbonate mixed micelles with the ability of pH-induced charge reversal for intracellular delivery of antitumor drugs [J]. Journal of Materials Chemistry B, 2016, 4: 6081-6093. [20] 冯静洁. 基于胆酸的两亲嵌段聚合物及其作为pH响应药物递送体系的研究[D]. 广州: 广东工业大学, 2019. [21] XIONG X B, BINKHATHLAN Z, MOLAVI O, et al. Amphiphilic block co-polymers: Preparation and application in nanodrug and gene delivery [J]. Acta Biomaterialia, 2012, 8(6): 2017-2033. [22] KOBAYASHI H, WATANABE R, CHOYKE P L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? [J]. Theranostics, 2013, 4(1): 81-89. [23] LIN W J, NIE S, ZHONG Q, et al. Amphiphilic miktoarm star copolymer (PCL)3-(PDEAEMA-b-PPEGMA)3 as pH-sensitive micelles in the delivery of anticancer drug [J]. Journal of Material Chemistry B, 2014, 2(25): 4008-4020. [24] SHANG Y Q, ZHENG N, WANG Z G. Tetraphenylsilane-cored star-shaped polymer micelles with pH/redox dual response and active targeting function for drug-controlled release [J]. Biomacromolecules, 2019, 20(12): 4602-4610. |
[1] | Yang Hui-yan, Guo Jian-wei. A Study of Star pH-Responsive Polymer and Its Self-Assembled Micelles [J]. Journal of Guangdong University of Technology, 2019, 36(01): 81-86. |
[2] | Guo Jian-wei, Wen Wei-qiu, Chen Shao-hua, Yue Hang-bo. Synthesis and Washing-Assistant Properties of Poly (disodium cis-epoxysuccinate) Detergent Builder [J]. Journal of Guangdong University of Technology, 2017, 34(02): 17-22. |
|