Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (01): 56-62.doi: 10.12052/gdutxb.200176
Previous Articles Next Articles
Yang Ji-sheng, Zhang Yun, Li Dong
CLC Number:
[1] 王玺. 谷歌公布无人驾驶车事故细节未来交通尚仍是梦[J]. 华东科技, 2016, 4(1): 10-15. [2] YAN Y, MAO Y, LI B. Second: Sparsely embedded convolutional detection [J]. Sensors, 2018, 18(10): 3337. [3] LANG A H, VORA S, CAESAR H, et al. Pointpillars: fast encoders for object detection from point clouds[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 12697-12705. [4] 杨泽鑫, 彭林才, 刘定宁, 等. 基于PCL和Qt的点云处理系统设计与开发[J]. 广东工业大学学报, 2017, 34(6): 61-67. YANG Z X, PENG L C, LIU D N, et al. Development of point cloud processing system based on PCL and Qt [J]. Journal of Guangdong University of Technology, 2017, 34(6): 61-67. [5] ZHOU Y, TUZEL O. Voxelnet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4490-4499. [6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788. [7] QI C R, LIU W, WU C, et al. Frustum pointnets for 3D object detection from RGB-D data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 918-927. [8] QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 652-660. [9] QI C R, LITANY O, HE K, et al. Deep hough voting for 3D object detection in point clouds[C]//Proceedings of the IEEE International Conference on Computer Vision. Long Beach: IEEE, 2019: 9277-9286. [10] SHI S, GUO C, JIANG L, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10529-10538. [11] LIU Z, ZHAO X, HUANG T, et al. TANet: robust 3D object detection from point clouds with triple attention[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 11677-11684. [12] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [13] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440. [14] DAI A, CHANG A X, SAVVA M, et al. Scannet: richly-annotated 3D reconstructions of indoor scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5828-5839. [15] SONG S, LICHTENBERG S P, XIAO J. Sun RGB-D: a RGB-D scene understanding benchmark suite[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 567-576. [16] SONG S, XIAO J. Deep sliding shapes for a modal 3D object detection in RGB-D images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 808-816. [17] HOU J, DAI A, NIEBNER M. 3D-SIS: 3D semantic instance segmentation of RGB-D scans[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4421-4430. [18] LAHOUD J, GHANEM B. 2D-driven 3D object detection in RGB-D images[C]//Proceedings of the IEEE International Conference on Computer Vision. Honolulu: IEEE, 2017: 4622-4630. [19] REN Z, SUDDERTH E B. Three-dimensional object detection and layout prediction using clouds of oriented gradients[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1525-1533. [20] HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Honolulu: IEEE, 2017: 2961-2969. [21] YI L, ZHAO W, WANG H, et al. GSPN: generative shape proposal network for 3D instance segmentation in point cloud[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3947-3956. [22] QI C R, YI L, SU H, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space [J]. Advances in Neural Information Processing Systems, 2017, 30: 5099-5108. |
[1] | Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21. |
[2] | Zhang Guo-sheng, Feng Guang, Li Dong. Pose-based Oriented Object Detection Network for Aerial Images [J]. Journal of Guangdong University of Technology, 2021, 38(05): 40-47. |
[3] | Huang Jian-hang, Wang Zhen-you. A Research on Deep Learning Object Detection Algorithm Based on Feature Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(04): 52-58. |
[4] | CHEN Shi-Wen1, 2 , Cai-Nian2, Xiao-Ming-Ming3. Detection of Moving Objects Based on the Gaussian Mixture Model and the Canny Operator [J]. Journal of Guangdong University of Technology, 2011, 28(3): 87-91. |
[5] | CAO Xiao-jun,PAN Bao-chang,ZHENG Sheng-lin,GAN Yan-fen . Motion Object Detection Method Based on the Characteristic Image [J]. Journal of Guangdong University of Technology, 2007, 24(2): 87-89. |
|