Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (04): 36-45.doi: 10.12052/gdutxb.210007

Previous Articles     Next Articles

A Characteristic Analysis of Atmospheric Pressure Dielectric Barrier Discharge Powered by Pulse Current Source

Zou Chong, Tang Xiong-min, Chen Wei-zheng, Jiang Tian-hong, Fang Wen-rui   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-01-14 Online:2022-07-10 Published:2022-06-29

Abstract: Since the characteristics of Atmospheric Pressure Dielectric Barrier Discharges (APDBD) are usually analyzed under sinusoidal voltage or pulse voltage, the characteristics of APDBDs powered by current source have been little studied. To address the issue, the characteristics of APDBD filled with helium are studied under bipolar pulse current. By constructing a one-dimensional fluid model of the APDBD, the voltammetry property of the APDBD and the temporal-spatial distribution characteristics of helium ions (He+) and excited helium atoms (He*) are numerically analyzed. The results show that the number density of He+ and He* is proportional to the current amplitude, and negatively correlated with the gap width. The breakdown voltage of the gap is negatively correlated with the amplitude of the applied current and positively correlated with the width of the gap. The increase of the gap width and the current amplitude makes the He* dense area more dispersed. In addition, the electrical equivalent circuit of APDBD, the selection of gap width effects, the effects of current amplitude, current rise time and working frequency are discussed.

Key words: atmospheric pressure dielectric barrier discharge, pulse current source, numerical analysis, temporal-spatial distribution, characteristic

CLC Number: 

  • TM836
[1] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9.
DAI D, NING W J, SHAO T. A review on the state of art and future trends of atmospheric pressure low temperature plasmas [J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9.
[2] HUANG X T, ZHOU S M, LIU M H. Investigation of the coupled volume dielectric barrier discharge for ozone formation in open atmospheric air [J]. IEEE Transactions on Plasma Science., 2018, 46(8): 2887-2893.
[3] 李超. 介质阻挡放电技术处理挥发性有机物的研究进展[J]. 化工进展, 2020, 39(5): 1964-1973.
LI C. Research progress on VOCs degradation using dielectric barrier discharge plasma [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1964-1973.
[4] 马良军, 王佳媚, 黄明明, 等. 不同处理条件对介质阻挡放电低温等离子体杀菌效果及影响机理研究[J]. 微生物学报, 2019, 59(4): 1513-1521.
MA L J, WANG J M, HUANG M M, et al. Sterilization by dielectric barrier discharge low temperature plasma under different treatment conditions [J]. Acta Microbiologica Sinica, 2019, 59(4): 1513-1521.
[5] SHAO T, LIU F, HAI B, et al. Surface modification of epoxy using an atmospheric pressure dielectric barrier discharge to accelerate surface charge dissipation [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3): 1557-1565.
[6] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996.
[7] 郑殿春. 气体放电数值仿真方法[M]. 北京: 科学出版社, 2016.
[8] 史曜炜, 周若瑜, 崔行磊, 等. 不同电源激励下共面介质阻挡放电特性实验[J]. 电工技术学报, 2018, 33(22): 5371-5380.
SHI Y W, ZHOU R Y, CUI X L, et al. Experimental investigation on characteristics of coplanar dielectric barrier discharge driven by different power supplies [J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5371-5380.
[9] ZHAO Z L, WANG W C, YANG D Z, et al. Nanosecond pulsed array wire-to-wire surface dielectric barrier discharge in atmospheric air: electrical and optical emission spectra characters influenced by quantity of electrodes [J]. IEEE Transactions on Plasma Science., 2019, 47(8): 4219-4224.
[10] 陈紫蒙, 马天鹏, 赵琼, 等. 大气压空气介质阻挡放电的数值模拟[J]. 东华大学学报(自然科学版), 2018, 44(3): 485-494.
CHEN Z M, MA T P, ZHAO Q, et al. Numerical simulation of atmospheric air dielectric barrier discharges [J]. Journal of Donghua University (Natural Science), 2018, 44(3): 485-494.
[11] PAN J, LI L, WANG Y N. Particle densities of the atmospheric-pressure argon plasmas generated by the pulsed dielectric barrier discharges [J]. Plasma Science and Technology, 2016, 18(11): 1081-1088.
[12] FANG Z, JI S C, PAN J, et al. Electrical model and experimental analysis of the atmospheric-pressure homogeneous dielectric barrier discharge in He [J]. IEEE Transactions on Plasma Science, 2012, 40(3): 883-891.
[13] DIEZ R, PIQUET H, FLOREZ D, et al. Current-mode approach in power supplies for DBD excilamps: review of 4 topologies [J]. IEEE Transactions on Plasma Science, 2015, 43(1): 452-460.
[14] RUEDA V, WIESNER A, DIEZ R, et al. Power estimation of a current supplied DBD considering the transformer parasitic elements [J]. IEEE Transactions on Industry Applications, 2019, 55(6): 6567-6575.
[15] FLOREZ D, DIEZ R, PIQUET H, et al. Square-shape current-mode supply for parametric control of the DBD excilamp power [J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1451-1460.
[16] EI-DEIB A A, DAWSON F, EERDEN G V, et al. Analysis and experimental validation of a new current-controlled driver for a dielectric barrier discharge lamp [J]. IEEE Transactions on Industry Applications, 2011, 47(4): 1974-1982.
[17] 张雨晖. 大气压氦气介质阻挡放电中典型非线性现象的仿真研究[D]. 广州: 华南理工大学, 2019.
[18] SANTOS M, NOEL C, BELMONTE T. Microwave capillary plasmas in helium at atmospheric pressure[DB]. (2017-11-14)[2020-07-28]. https://www.lx-cat.net/.
[19] 万静, 宁文军, 张雨晖, 等. 气隙宽度对大气压氦气介质阻挡放电多脉冲特性影响的仿真研究[J]. 电工技术学报, 2019, 34(4): 871-879.
WAN J, NING W J, ZHANG Y H, et al. Influence of gap width on the multipeak characteristics of atmospheric pressure helium dielectric barrier discharges-a numerical approach [J]. Transactions of China Electrotechnical Society, 2019, 34(4): 871-879.
[20] LAZAROU C, BELMONTE T, CHIPER A S, et al. Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge [J]. Plasma Sources Science and Technology, 2016, 25(5): 1-20.
[21] TANG X, LI Z, ZHANG M. A wide-range frequency model for dielectric barrier discharge type ozone generators powered by series resonant inverters[J]. IEEE Access, 2019, 7: 124309-124314.
[22] 王帅, 邱祁, 刘星亮, 等. 大气压短间隙介质阻挡放电等效负载模型[J]. 电工电能新技术, 2018, 37(11): 9-14.
WANG S, QIU Q, LIU X L, et al. Equivalent load model of dielectric barrier discharge in short gap at atmospheric pressure [J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(11): 9-14.
[23] 潘光胜, 谭震宇, 王晓龙, 等. 高氧浓度下大气压Ar/O2脉冲介质阻挡放电频率特性数值研究[J]. 电工技术学报, 2017, 32(20): 71-81.
PAN G S, TAN Z Y, WANG X L, et al. A numerical study on the frequency effects of the electrical characteristics of the pulsed dielectric barrier discharge in Ar/O2 with high oxygen concentration at atmospheric pressure [J]. Transactions of China Electrotechnical Society, 2017, 32(20): 71-81.
[1] Huang Zhen-ying, Sun Xiao-long, Zhu Yun-chu, Cang Zhi, Yuan Jun-shen, Lyu Jian-bing. Thermal Aging Behavior Characteristics of Light Stabilized Modified Asphalt Materials [J]. Journal of Guangdong University of Technology, 2022, 39(06): 80-89.
[2] Huang Jin-hua, Lu Sheng-guo. Porous Structure of Soybean and its Adsorption Characteristics on Neutral Red Dye and Heavy Metal Ions [J]. Journal of Guangdong University of Technology, 2022, 39(06): 107-113.
[3] Zhao Ya-bo, Huang Liu-qian, Ma Shi-fa, Fan Jian-hong, Xie Di-xiang. A Discussion on Evolution Characteristics and Influencing Factors of the Economic Links in the Pearl River Delta Urban Agglomeration [J]. Journal of Guangdong University of Technology, 2022, 39(03): 95-104.
[4] Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61.
[5] Liu Lin, Huang Jia-hao, Liu Li-ru, Gao Yun-fei, Jin Lei. A LCZ-based Research on the Correlations Between Block-Scale Surface Morphological Characteristics and Thermal-Humid Environment Based on Local Climate Zone [J]. Journal of Guangdong University of Technology, 2021, 38(05): 82-89.
[6] Peng Tong-zhuang, Liu Li-cheng, Yang Guan-shui. A Fast Inter-prediction Mode Selection Algorithm Based on Motion Characteristics [J]. Journal of Guangdong University of Technology, 2021, 38(03): 36-41.
[7] Li Ruo-jia, Zhang Yi-ling, He Shao-ying. Application of Spatial Analysis Technology in the Prophase Planning of Characteristic Town — A Case Study of Qiantan Town in Jiande City [J]. Journal of Guangdong University of Technology, 2021, 38(03): 104-110.
[8] Wang Yan-guang, Zhu Hong-bin, Xu Wei-chao. A Review on ROC Curve and Analysis [J]. Journal of Guangdong University of Technology, 2021, 38(01): 46-53.
[9] Guo Kun-xiang, Li De-yuan, Huang Jun-dong. A Study of Aerodynamic Characteristics of Back-swept Wind Turbine Blades under Extreme Operating Gusts [J]. Journal of Guangdong University of Technology, 2020, 37(05): 100-104.
[10] Zhuang Chu-nan, Xu Jia-xiong, Lin Jun-hui. Numerical Analysis of Contact Characteristics between CZTSSe Thin Film and Mo Back Electrode [J]. Journal of Guangdong University of Technology, 2020, 37(03): 106-113.
[11] Zheng Xiao-sheng, Luo Jun-wei, Lu Pei, Luo Xiang-long, Chen Jian-yong, Yang Zhi, Liang Ying-zong, Chen Ying. An Experimental Study of Zeotropic-Mixture Organic Rankine Cycle System Utilizing R1234ze (E)/R245fa [J]. Journal of Guangdong University of Technology, 2020, 37(03): 114-120.
[12] Huang Tao-tao, Liu Li-cheng, Peng Tong-zhuang. Fast Inter-prediction Mode Selection Algorithm Based on Motion Characteristics [J]. Journal of Guangdong University of Technology, 2020, 37(02): 74-79.
[13] Chen Rong-ning, Wei Xue-mei. Weak Well-posedness for the Generalized Camassa-Holm Equation [J]. Journal of Guangdong University of Technology, 2020, 37(02): 80-86.
[14] Liang Shi-hua, Chen Jun-tao, Lin Huan-sheng, Feng De-luan, Gong Xing, Luo Qing-zi. An Experimental Study of Using Cement Stabilized Silt as Filling Material [J]. Journal of Guangdong University of Technology, 2020, 37(02): 102-106.
[15] Liu Yi-xin, Ou Chun-yao, Zhang Guang-yu, Yang Shi-wei. The Growth Path and Characteristics of New R&D Institutions: From the Perspective of Scientific and Technological Innovation [J]. Journal of Guangdong University of Technology, 2019, 36(05): 94-101,110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!