Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (02): 55-61.doi: 10.12052/gdutxb.210056
Previous Articles Next Articles
Zheng Jia-bi1, Yang Zhen-guo1, Liu Wen-yin1,2
CLC Number:
[1] HAIR J J F, SARSTEDT M. Data, measurement, and causal inferences in machine learning: opportunities and challenges for marketing [J]. Journal of Marketing Theory and Practice, 2021, 29(1): 1-13. [2] VARIAN H R. Causal inference in economics and marketing [J]. Proceedings of the National Academy of Sciences, 2016, 113(27): 7310-7315. [3] PEARL J, MACKENZIE D. The book of why: the new science of cause and effect[M]. New York: Basic Books, 2018. [4] RUBIN D B, WATERMAN R P. Estimating the causal effects of marketing interventions using propensity score methodology [J]. Statistical Science, 2006, 21(2): 206-222. [5] 苗旺, 刘春辰, 耿直. 因果推断的统计方法[J]. 中国科学:数学, 2018, 48(12): 1753-1778. MIAO W, LIU C C, GENG Z. Statistical approaches for causal inference [J]. Sci Sin Math, 2018, 48(12): 1753-1778. [6] 郝志峰, 黎伊婷, 蔡瑞初, 等. 基于因果模型的社交网络用户购物行为研究[J]. 广东工业大学学报, 2020, 37(3): 1-8. HAO Z F, LI Y T, CAI R C, et al. A research on users’ shopping behaviors in social network based on causal model [J]. Journal of Guangdong University of Technology, 2020, 37(3): 1-8. [7] KOHAVI R, LONGBOTHAM R. Online controlled experiments and A/B testing [J]. Encyclopedia of Machine Learning and Data Mining, 2017, 7(8): 922-929. [8] SAJONS G B. Estimating the causal effect of measured endogenous variables: a tutorial on experimentally randomized instrumental variables [J]. The Leadership Quarterly, 2020, 31(5): 101348. [9] VARNALI K. Online behavioral advertising: an integrative review [J]. Journal of Marketing Communications, 2021, 27(1): 93-114. [10] JOHANSSON F, SHALIT U, SONTAG D. Learning representations for counterfactual inference[C]// International Conference on Machine Learning. Cambridge MA: PMLR, 2016: 3020-3029. [11] HARTFORD J, LEWIS G, LEYTON-BROWN K, et al. Deep IV: a flexible approach for counterfactual prediction[C]//International Conference on Machine Learning. Cambridge MA: PMLR, 2017: 1414-1423. [12] LOUIZOS C, SHALIT U, MOOIJ J, et al. Causal effect inference with deep latent-variable models[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: NeurIPS, 2017: 6449-6459. [13] TAN Z. Regularized calibrated estimation of propensity scores with model misspecification and high-dimensional data [J]. Biometrika, 2020, 107(1): 137-158. [14] ZHAO Q. Covariate balancing propensity score by tailored loss functions [J]. Annals of Statistics, 2019, 47(2): 965-993. [15] IMAI K, RATKOVIC M. Covariate balancing propensity score [J]. Journal of the Royal Statistical Society, 2014, 76(1): 243-263. [16] KALLUS N. Deepmatch: balancing deep covariate representations for causal inference using adversarial training[C]//International Conference on Machine Learning. Cambridge MA: PMLR, 2020: 5067-5077. [17] YOON J, JORDON J, VAN DER SCHAAR M. GANITE: Estimation of individualized treatment effects using generative adversarial nets[C]//International Conference on Learning Representations. Vancouver: ICLR, 2018. [18] KUANG K, CUI P, LI B, et al. Treatment effect estimation via differentiated confounder balancing and regression [J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2019, 14(1): 1-25. [19] FAN Q, HSU Y C, LIELI R P, et al. Estimation of conditional average treatment effects with high-dimensional data (2019-05-06) [2020-08-15]. http://ideas.repec.org/p/arx/papers/1908.02399.html [20] LI S, FU Y. Matching on balanced nonlinear representations for treatment effects estimation [J]. Advances in Neural Information Processing Systems, 2017, 30: 929-939. [21] YAO L, LI S, LI Y, et al. Representation learning for treatment effect estimation from observational data [J]. Advances in Neural Information Processing Systems, Montreal:NeurIPS, 2018(14): 31-40. [22] HAN Y, LAM J C K, LI V O K. A Bayesian LSTM model to evaluate the effects of air pollution control regulations in China[C]//2018 IEEE International Conference on Big Data (Big Data). Piscataway: IEEE, 2018: 4465-4468. [23] SILVA D F, GIUSTI R, KEOGH E, et al. Speeding up similarity search under dynamic time warping by pruning unpromising alignments [J]. Data Mining and Knowledge Discovery, 2018, 32(4): 988-1016. |
[1] | Liu Dong-ning, Wang Zi-qi, Zeng Yan-jiao, Wen Fu-yan, Wang Yang. Prediction Method of Gene Methylation Sites Based on LSTM with Compound Coding Characteristics [J]. Journal of Guangdong University of Technology, 2023, 40(01): 1-9. |
[2] | Xu Wei-feng, Cai Shu-ting, Xiong Xiao-ming. Visual Inertial Odometry Based on Deep Features [J]. Journal of Guangdong University of Technology, 2023, 40(01): 56-60,76. |
[3] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
[4] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8. |
[5] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8. |
[6] | Lai Jun, Liu Zhen-yu, Liu Sheng-hai. A Small Sample Data Prediction Method Based on Global Data Shuffling [J]. Journal of Guangdong University of Technology, 2021, 38(03): 17-21. |
[7] | Cen Shi-jie, He Yuan-lie, Chen Xiao-cong. A Monocular Depth Estimation Combined with Attention and Unsupervised Deep Learning [J]. Journal of Guangdong University of Technology, 2020, 37(04): 35-41. |
[8] | Zeng Bi, Ren Wan-ling, Chen Yun-hua. An Unpaired Face Illumination Normalization Method Based on CycleGAN [J]. Journal of Guangdong University of Technology, 2018, 35(05): 11-19. |
[9] | Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37. |
[10] | Chen Xu, Zhang Jun, Chen Wen-wei, Li Shuo-hao. Convolutional Neural Network Algorithm and Case [J]. Journal of Guangdong University of Technology, 2017, 34(06): 20-26. |
[11] | Liu Zhen-yu, Li Jia-jun, Wang Kun. A Fingerprint Matching Localization Method Based on Deep Auto Encoder [J]. Journal of Guangdong University of Technology, 2017, 34(05): 15-21. |
|