Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (01): 1-13.doi: 10.12052/gdutxb.210124
Luo Chao-bing, Li Hai-chao, You Ting-ting, Xu Feng
CLC Number:
[1] 裴继诚, 杨淑慧, 平清伟, 等. 植物纤维化学 [M]. 北京: 中国轻工业出版社, 2016. [2] 路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展, 2013, 25(5): 838-858. LU Y, WEI X Y, ZONG Z M, et al. Structure investigation and application of lignins [J]. Progress in Chemistry, 2013, 25(5): 838-858. [3] LIAO J J, LATIF N H A, TRACHE D, et al. Current advancement on the isolation, characterization and application of lignin [J]. International Journal of Biological Macromolecules, 2020, 162(1): 985-1024. [4] SHAO Z Y, FU Y J, WANG P, et al. Modification of the aspen lignin structure during integrated fractionation process of autohydrolysis and formic acid delignification [J]. International Journal of Biological Macromolecules, 2020, 165: 1727-1737. [5] CHAKAR F S, RAGAUSKAS A J. Review of current and future softwood kraft lignin process chemistry [J]. Industrial Crops & Products, 2004, 20(2): 131-141. [6] 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448. WANG H, YANG D J, QIAN Y, et al. Recent progress in the preparation and application of lignin-based functional materials [J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448. [7] SANCHEZ P B, GONZALEZ B, SALGADO J, et al. Physical properties of seven deep eutectic solvents based on L-proline or betaine [J]. Journal of Chemical Thermodynamics, 2019, 131: 517-523. [8] TIAN D, GUO Y, HU J, et al. Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity [J]. International Journal of Biological Macromolecules, 2020, 142: 288-297. [9] LIU Q, ZHAO X, YU D, et al. Novel deep eutectic solvents with different functional groups towards highly efficient dissolution of lignin [J]. Green Chemistry, 2019, 21(19): 5291-5297. [10] 常杰, 刘钧, 郭姝君, 等. 新型深度共熔溶剂选择性分离木质素的研究 [J]. 华南理工大学学报(自然科学版), 2016, 44(6): 14-20. CHANG J, LIU J, GUO S J, et al. Investigation into selective separation of lignin in novel deep eutectic solvent [J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(6): 14-20. [11] KUMAR A K, SHARMA S, SHAH E, et al. Technical assessment of natural deep eutectic solvent (NADES) mediated biorefinery process: a case study [J]. Journal of Molecular Liquids, 2018, 260: 313-322. [12] SHEN X J, WEN J L, MEI Q Q, et al. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization [J]. Green Chemistry, 2019, 21(2): 275-283. [13] TAN Y T, NGOH G C, CHUA A S M. Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch [J]. Industrial Crops and Products, 2018, 123: 271-277. [14] LI T, LYU G, LIU Y, et al. Deep eutectic solvents (DESs) for the isolation of willow lignin (Salix matsudana cv. Zhuliu) [J]. International Journal of Molecular Sciences, 2017, 18(11): 2266. [15] GUO Z W, ZHANG Q L, YOU T T, et al. Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization [J]. Green Chemistry, 2019, 21(11): 3099-3108. [16] KOHLI K, KATUWAL S, BISWAS A, et al. Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents [J]. Bioresource Technology, 2020, 303: 122897. [17] ZHANG C W, Xia S Q, MA P S. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents [J]. Bioresource Technology, 2016, 219: 1-5. [18] LI W X, XIAO W Z, YANG Y Q, et al. Insights into bamboo delignification with acidic deep eutectic solvents pretreatment for enhanced lignin fractionation and valorization [J]. Industrial Crops and Products, 2021, 170: 113692. [19] GUO Z W, LING Z, WANG C, et al. Integration of facile deep eutectic solvents pretreatment for enhanced enzymatic hydrolysis and lignin valorization from industrial xylose residue [J]. Bioresource Technology, 2018, 265: 334-339. [20] XIA Q, LIU Y, MENG J, et al. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass [J]. Green Chemistry, 2018, 20(12): 2711-2721. [21] GUO Z, LI D, YOU T, et al. New lignin streams derived from heteropoly acids-enhanced neutral deep eutectic solvent fractionation: towards structural elucidation and antioxidant performance [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 12110. [22] SONG Y, DONG Y, YANG T, et al. Synthesis and pharmacological evaluation of novel bisindolylalkanes analogues [J]. Bioorganic & Medicinal Chemistry, 2013, 21: 7624-7627. [23] YOO C G, LI M, MENG X, et al. Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis[J]. Green Chemistry, 2017, 19: 2006-2016. [24] TAN T, NGOH G C, CHUA A S M. Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch[J]. Industrial Crops and Products, 2018, 123: 271-277. [25] JI Q, YU X, YAGOUB A G A, et al. Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent [J]. Industrial Crops and Products, 2020, 149: 112357. [26] KIM K H, DUTTA T, SUN J, et al. Biomass pretreatment using deep eutectic solvents from lignin derived phenols[J]. Green Chemistry, 2018, 20(4): 809-815. [27] PROCENTESE A, JOHNSON E, ORR V, et al. Deep eutectic solvent pretreatment and subsequent saccharification of corncob[J]. Bioresource Technology, 2015, 192: 31-36. [28] SHARMA M, MUKESH C, MONDAL D, et al. Dissolution of α-chitin in deep eutectic solvents [J]. RSC Advances, 2013, 3: 18149-18155. [29] LIU Y, CHEN W, XIA Q, et al. Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent [J]. ChemSusChem, 2017, 10(8): 1692-1700. [30] CHEN Z, WAN C. Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment [J]. Bioresource Technology, 2018, 250: 532-537. [31] GAUDINO E C, TABASSO S, GRILLO G, et al. Wheat straw lignin extraction with bio-based solvents using enabling technologies [J]. Comptes Rendus Chimie, 2018, 21(6): 563-571. [32] LI P, ZHANG Q, ZHANG X, et al. Subcellular dissolution of xylan and lignin for enhancing enzymatic hydrolysis of microwave assisted deep eutectic solvent pretreated Pinus bungeana Zucc [J]. Bioresource Technology, 2019, 288: 121475. [33] CHEN W M, WANG X, FEIZBAKHSHAN M, et al. Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors [J]. Journal of Colloid and Interface Science, 2019, 540: 524-534. [34] LIU B, HUANG Y, CAO H J, et al. A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane [J]. Journal of Solid State Electrochemistry, 2018, 22(3): 807-816. [35] ZHANG L, YOU T, ZHOU T, et al. Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultra-high performance supercapacitors [J]. ACS Applied Materials & Interfaces, 2016, 8: 13918-13925. [36] GUO S, LI H, ZHANG X, et al. Lignin carbon aerogel/nickel binary network for cubic supercapacitor electrodes with ultra-high areal capacitance [J]. Carbon, 2021, 174: 500-508. [37] MA L, ZHAO T C, XU F, et al. A dual utilization strategy of lignosulfonate for MXene asymmetric supercapacitor with high area energy density [J]. Chemical Engineering Journal, 2021, 405: 126694. [38] UGARTONDO V, MITJANS M, VINARDELL M P. Comparative antioxidant and cytotoxic effects of lignins from different sources [J]. Bioresource Technology, 2008, 99(14): 6683-6687. [39] KAI D, TAN M J, CHEE P L, et al. Towards lignin-based functional materials in a sustainable world [J]. Green Chemistry, 2016, 18: 1175-1200. [40] DOMENEK S, LOUAIFI A, GUINAULT A, et al. Potential of lignins as antioxidant additive in active biodegradable packaging materials [J]. Journal of Polymers and the Environment, 2013, 21: 692-701. [41] MONTES M L I, LUZI F, DOMINICI F, et al. Design and characterization of PLA bilayer films containing lignin and cellulose nanostructures in combination with umbelliferone as active ingredient [J]. Frontiers in Chemistry, 2019, 7: 157. [42] YANG W, FORTUNATI E, BERTOGLIO F, et al. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles [J]. Carbohydrate Polymers, 2018, 181: 275-284. [43] YANG W, OWCZAREK J S, FORTUNATI E, et al. Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging [J]. Industrial Crops and Products, 2016, 94: 800-811. [44] HE X, LUZI F, HAO X, et al. Thermal, antioxidant and swelling behaviour of transparent polyvinyl (alcohol) films in presence of hydrophobic citric acid-modified lignin nanoparticles [J]. International Journal of Biological Macromolecules, 2019, 127: 665-676. [45] TAVARES L B, ITO N M, SALVADORI M C, et al. PBAT/kraft lignin blend in flexible laminated food packaging: peeling resistance and thermal degradability [J]. Polymer Testing, 2018, 67: 169-176. [46] TAVARES L B, ROSA D D S. Stabilization effect of kraft lignin into PBAT: thermal analyses approach [J]. Revista Matéria, 2019, 24: e12405. [47] KAI D, ZHANG K, JIANG L, et al. Sustainable and antioxidant lignin–polyester copolymers and nanofibers for potential healthcare applications [J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 6016-6025. [48] SUNTHORNVARABHAS J, LIENGPRAYOON S, SUWONSICHON T. Antimicrobial kinetic activities of lignin from sugarcane bagasse for textile product [J]. Industrial Crops and Products, 2017, 109: 857-861. [49] ALZAGAMEEM A, KLEIN S E, BERGS M, et al. Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms [J]. Polymers, 2019, 11: 670. [50] AADIL K R, PRAJAPAATI D, JHA H. Improvement of physcio-chemical and functional properties of alginate film by Acacia lignin [J]. Food Packaging and Shelf Life, 2016, 10: 25-33. [51] SPASOJEVIĆ D, ZMEJKOSKI D, GLAMOČLIJA J, et al. Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment [J]. International Journal of Antimicrobial Agents, 2016, 48: 732-735. [52] LI M, JIANG X, WANG D, et al. In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application [J]. Colloids and Surfaces B:Biointerfaces, 2019, 177: 370-376. [53] LEE E S, KIM Y O, HA Y M, et al. Antimicrobial properties of lignin-decorated thin multi-walled carbon nanotubes in poly(vinyl alcohol) nanocomposites [J]. European Polymer Journal, 2018, 105: 79-84. [54] ERAKOVIC S, JANKOVIC A, TSUI G, et al. Novel bioactive antimicrobial lignin containing coatings on titanium obtained by electrophoretic deposition [J]. International Journal of Molecular Sciences, 2014, 15: 12294-12322. [55] 范娟, 詹怀宇, 刘明华. 木质素基吸附材料的研究进展[J]. 中国造纸学报, 2004, 19(2): 181-187. FAN J, ZHAN H Y, LIU M H. Progress in research on lignin-based adsorption material [J]. Transactions of China Pulp and Paper, 2004, 19(2): 181-187. [56] DIDEHBAN K, MIRSHOKRAIE S, AZIMVAND J. Safranin-O dye removal from aqueous solution using superabsorbent lignin nanoparticle/polyacrylic acid hydrogel [J]. Eurasian Journal of Analytical Chemistry, 2018, 13: 3. [57] ZHANG D, WANG L, ZENG H, et al. Novel polyethyleneimine functionalized chitosan–lignin composite sponge with nanowall-network structures for fast and efficient removal of Hg(II) ions from aqueous solution [J]. Environmental Science:Nano, 2020, 7: 793-802. [58] 薛蓓, 房伶晏, 梁辰, 等. 磁性木质素制备及其对染料的吸附性能[J]. 林业工程学报, 2019, 4(4): 85-92. XUE B, FANG L Y, LIANG C, et al. Preparation of lignin/Fe3O4 based magnetic material and their performance in adsorption of dyes [J]. Journal of Forestry Engineering, 2019, 4(4): 85-92. [59] DIAS O A T, SAIN M, CESARINO I, et al. Development of high bio-content polypropylene composites with different industrial lignins [J]. Polymers for Advanced Technologies, 2019, 30: 70-78. [60] YE D, JIANG L, HU X, et al. Lignosulfonate as reinforcement in polyvinyl alcohol film: mechanical properties and interaction analysis [J]. International Journal of Biological Macromolecules, 2016, 83: 209-215. [61] DIOP A, MIJIYAWA F, KOFFI F, et al. Montplaisir study of lignin dispersion in low-density polyethylene [J]. Journal of Thermoplastic Composite Materials, 2015, 28: 1662-1674. [62] LIAO J, BROSSE N, PIZZI A, et al. Polypropylene blend with polyphenols through dynamic vulcanization: mechanical, rheological, crystalline, thermal, and UV protective property [J]. Polymer, 2019, 11: 1108. [63] DEHNE L, BABARRO C V, SAAKE, B, et al. Influence of lignin source and esterification on properties of lignin-polyethylene blends [J]. Industrial Crops and Products, 2016, 86: 320-328. [64] MALDHURE A V, EKHE J D, DEENADAYDLAN E. Mechanical properties of polypropylene blended with esterified and alkylated lignin [J]. Journal of Applied Polymer Science, 2012, 125: 1701-1712. [65] ZHANG Y, ZHOU S, FANG X, et al. Renewable and flexible UV-blocking film from poly(butylene succinate) and lignin [J]. European Polymer Journal, 2019, 116: 265-274. [66] 唐梦菲, 王明杰, 陈瑶, 等. 酸酐改性硫酸盐木质素增强HDPE复合材料的物理力学性[J]. 西北林学院学报, 2020, 35(2): 202-207. TANG M F, WANG M J, CHEN Y, et al. Physical and mechanical properties of HDPE-based composites reinforced with anhydrides modified industrial waste lignin [J]. Journal of Northwest Forestry University, 2020, 35(2): 202-207. [67] BERNAEDINI J, CINELLI P, ANGUILLESI I, et al. Flexible polyurethane foams green production employing lignin or oxypropylated lignin [J]. European Polymer Journal, 2015, 64: 147-156. [68] CHEN P, ZHANG L, PENG S, et al. Effects of nanoscale hydroxypropyl lignin on properties of soy protein plastics [J]. Journal of Applied Polymer Science, 2006, 101: 334-341. [69] BARNES S H, GOSWAMI M, Nguyen N A, et al. An ionomeric renewable thermoplastic from lignin-reinforced rubber [J]. Macromolecular Rapid Communications, 2019, 40(13): 1900059. [70] CHEN J, FAN X, ZHANG L, et al. Research progress in lignin-based slow/controlled release fertilizer[J]. ChemSusChem, 2020, 13(17): 4356-4366. [71] MULDER W J, GOSSELINK R J A, VINGERGOEDS M H, et al. Lignin based controlled release coatings[J]. Industrial Crops and Products, 2011, 34: 915-920. [72] JIAO G J, PENG P, SUN S L, et al. Amination of biorefinery technical lignin by Mannich reaction for preparing highly efficient nitrogen fertilizer[J]. International Journal of Biological Macromolecules, 2019, 127: 544-554. [73] LI J, WANG M, SHE D, et al. Structural functionalization of industrial softwood kraft lignin for simple dip-coating of urea as highly efficient nitrogen fertilizer[J]. Industrial Crops and Products, 2017, 109: 255-265. [74] 马艳丽, 王儒儒, 方桂珍, 等. 聚丙烯酸接枝碱木质素基铁肥的制备及其缓释性能[J]. 农业工程学报, 2012, 28(18): 208-214. MA Y L, WANG R R, FANG G Z. Preparation and release release performance of polyacrylic acid grafted ailkali lignin-based iron fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(18): 208-214. [75] 任世学, 倪海月, 田金玲, 等. 碱木质素交联PVA共混啶虫脒缓释薄膜的制备及性能[J]. 北京林业大学学报, 2015, 37(12): 116-121. REN S X, NI H Y, TIAN J L, et al. Preparation and performance of alkali lignin-PVA crosslinked blend slow release acetaniprid film [J]. Journal of Beijing Forestry University, 2015, 37(12): 116-121. [76] FERTAHI S, BERTRAND I, AMJOUD M B, et al. Properties of coated slow-release triple superphosphate (TSP) fertilizers based on lignin and carrageenan formulations [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10371. [77] 李澜鹏, 李秀峥, 白富栋. 木质素基酚醛树脂胶黏剂研究进展 [J]. 当代化工, 2021, 50(7): 1711-1715. LI L P, LI X Z, BAI F D. Research progress of lignin-based phenolic resin adhesive [J]. Contemporary Chemical Industry, 2021, 50(7): 1711-1715. [78] 许凤, 邵鲁鹏, 游婷婷, 等. 一种酚醛树脂胶黏剂及其制备方法和使用方法: 105694779 A [P]. 2016-06-22. [79] 许凤, 游婷婷, 郭思勤, 等. 一种木质素基绿色胶黏剂的制备及使用方法: 105694781 B [P]. 2019-03-01. [80] 许凤, 游婷婷, 贡立洋, 等. 一种高木质素替代比绿色酚醛树脂胶黏剂的制备方法: 108587538 B [P]. 2021-01-22. [81] 王凯, 刘凤霞, 魏炜, 等. 三步共聚法制备木质素基酚醛树脂胶粘剂[J]. 热固性树脂, 2020, 35(2): 12-17. WANG K, LIU F X, WEI W, et al. Preparation of lignin-based phenolic resin adhesive by three-step copolymerization [J]. Thermosetting Resin, 2020, 35(2): 12-17. [82] JIN Y, CHENG X, ZHENG Z. Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin [J]. Bioresource Technology, 2010, 101(6): 2046-2048. [83] ZHANG W, MA Y, XU Y, et al. Lignocellulosic ethanol residue-based lignin-phenol-formaldehyde resin; adhesive [J]. International Journal of Adhesion & Adhesives, 2013, 40(1): 11-18. [84] TACHON N, BENJELLOUM-MLAYAH B, DALMAS M. Organosolv wheat straw lignin as a phenol substitute for green phenolic resin [J]. Bioresources, 2016, 11(3): 5797. [85] KALAMI S, AREFMANESH M, MASTER E, et al. Replacing 100% of phenol in phenolic adhesive formulations with lignin [J]. Journal of Applied Polymer Science, 2017, 134(30): 45124-45132. [86] DANIELSON B, SIMONSON R. Kraft lignin in phenol formaldehyde resin. Part 1. Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood [J]. Journal of Adhesion Science and Technology, 2012, 12(9): 923-939. [87] 舒友, 许倩, 赵鑫鹏, 等. 木质素改性聚醋酸乙烯酯/聚丁二酸丁二醇酯复合材料的性能研究[J]. 精细化工中间体, 2019, 49(1): 34-43. SHU Y, XU Q, ZHAO X P, et al. Preparation and properties of PBS/L-PVAc composites [J]. Fine Chemical Intermediates, 2019, 49(1): 34-43. [88] 舒友, 胡扬剑, 陈迪钊, 等. 用于聚丁二酸丁二醇酯的阻燃剂、阻燃聚丁二酸丁二醇酯材料及其制备方法: 109627452 A [P]. 2019-04-16 [89] LIU L, HUANG G, SONG P, et al. Converting industrial alkali lignin to biobased functional additives for improving fire behavior and smoke suppression of polybutylene succinate [J]. ACS Sustainable Chemistry & Engineering, 2016, 4: 4732-4742. [90] 穆春玉. 木质素/聚乳酸复合材料的制备与性能研究[D]. 成都: 西南交通大学, 2014. [91] 刘志华, 聂率, 龚明山, 等. 木质素/木粉/聚乳酸复合材料的制备及其性能[J]. 塑料, 2019, 2: 8-13. LIU Z H, NIE S, GONG M S, et al. Preparation and properties of lignin/wood flour/PLA composite [J]. Plastics, 2019, 2: 8-13. [92] GORDOBIL O, EGÜÉS I, LLANO-PONTE R, et al. Physicochemical properties of PLA lignin blends [J]. Polymer Degradation and Stability, 2014, 108: 330-338. [93] 苏玲, 任世学, 方桂珍. 戊二醛交联碱木质素/聚乙烯醇膜的制备及其光学性能[J]. 生物质化学工程, 2013, 47(3): 1-5. SU L, REN S X, FANG G Z. Preparation and optical properties of glutaraldehyde crosslinked alkali lignin/PVA films [J]. Biomass Chemical Engineering, 2013, 47(3): 1-5. [94] CORRADINI E, PINEDE E A G, HECHENLEITNER A A W. Lignin-poly (vinyl alcohol) blends studied by thermal analysis [J]. Polymer Degradation & Stability, 1999, 66(2): 199-208. [95] KUBO S, KADLA J F. The formation of strong intermolecular interactions in immiscible blends of poly(vinyl alcohol) (PVA) and lignin [J]. Biomacromolecules, 2003, 4(3): 561-567. [96] 王飞. 木质素/聚己内酯降解塑料的制备及性能研究[D]. 绵阳: 西南科技大学, 2015. [97] MOUSAVIOUN P, HALLEY P J, DOHERTY W. Thermophysical properties and rheology of PHB/lignin blends [J]. Industrial Crops and Products, 2013, 50: 270-275. [98] KAI D, ZHANG K, LIOW S S, et al. New dual functional PHB-grafted lignin copolymer: synthesis, mechanical properties, and biocompatibility studies [J]. ACS Applied Bio Materials, 2019, 2: 127-134. |
[1] | Wan Tao, Yuan Wen-xiong, Zhao Chen, Min Yong-gang. Research Progress of Two-dimensional Materials and Conducting Polymer Composites in Flexible Supercapacitors [J]. Journal of Guangdong University of Technology, 2023, 40(02): 74-81. |
[2] | Yu Jian, Chen Ze-hong, Peng Xin-wen. Application of Biomass-based Energy Storage Materials in Flexible Devices [J]. Journal of Guangdong University of Technology, 2022, 39(01): 41-49. |
[3] | Liu Li-ying,Zhang Hai-yan,Liu Bing-rong,Chen Lie-chun,Chen Yi-ming. NixCo1-xO Prepared by Combining Co-precipitation and Roasting and the Properties of Supercapacitors [J]. Journal of Guangdong University of Technology, 2008, 25(3): 18-20. |
|