Journal of Guangdong University of Technology ›› 2025, Vol. 42 ›› Issue (1): 24-32.doi: 10.12052/gdutxb.230177
• Smart Medical • Previous Articles
Zeng An1, Wang Dan1, Yang Baoyao1, Zhang Xiaobo2, Shi Zhenwei3, Liu Zaiyi3, Pan Dan4
CLC Number:
[1] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA: A Cancer Journal for Clinicians, 2023, 73(1): 17-48. [2] KASINATHAN G, JAYAKUMAR S, GANDOMI A H. Automated 3-D lung tumor detection and classification by an active contour model and CNN classifier[J]. Expert Systems with Applications, 2019, 134: 112-119. [3] 刘桂红, 赵亮, 孙劲光, 等. 一种改进粒子群优化算法的Otsu图像阈值分割方法[J]. 计算机科学, 2016, 43(3): 309-312. LIU G H, ZHAO L, SUN J G, et al. Otsu image threshold segmentation method based on improved particle swarm optimization[J]. Computer Science, 2016, 43(3): 309-312. [4] 贾鹤鸣, 李瑶, 姜子超, 等. 基于改进共生生物搜索算法的林火图像多阈值分割[J]. 计算机应用, 2021, 41(5): 1465-1470. JIA H M, LI Y, JIANG Z C, et al. Multi-threshold segmentation of forest fire images based on modified symbiotic organisms search algorithm[J]. Journal of Computer Applications, 2021, 41(5): 1465-1470. [5] MALATHI M, SINTHIA P, JALALDEEN K. Active contour based segmentation and classification for pleura diseases based on Otsu’s thresholding and support vector machine (SVM) [J]. Asian Pacific Journal of Cancer Prevention: APJCP, 2019, 20(1): 167. [6] GOPI K, SELVAKUMAR J. Lung tumor area recognition and classification using EK-mean clustering and SVM[C]//2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2) . Tamil Nadu: IEEE, 2017: 97-100. [7] SANGAMITHRAA P B, GOVINDARAJU S. Lung tumour detection and classification using EK-Mean clustering[C]//2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) . Chennai : IEEE, 2016: 2201-2206. [8] MI H, PETITJEAN C, DUBRAY B, et al. Automatic lung tumor segmentation on PET images based on random walks and tumor growth model[C]//2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) . Beijing: IEEE, 2014: 1385-1388. [9] JONES J L, XIE X, ESSA E. Combining region-based and imprecise boundary-based cues for interactive medical image segmentation[J]. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30(12): 1649-1666. [10] YANG B, XIANG D, YU F, et al. Lung tumor segmentation based on the multi-scale template matching and region growing[C]//Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging. Houston: SPIE, 2018, 10578: 645-651. [11] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Santiago: IEEE, 2015: 3431-3440. [12] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Munich: Springer International Publishing, 2015: 234-241. [13] DUTANDE P, BAID U, TALBAR S. Deep residual separable convolutional neural network for lung tumor segmentation[J]. Computers in Biology and Medicine, 2022, 141: 105161. [14] YANG J, WU B, LI L, et al. MSDS-UNet: a multi-scale deeply supervised 3D U-Net for automatic segmentation of lung tumor in CT[J]. Computerized Medical Imaging and Graphics, 2021, 92: 101957. [15] ZHANG G, YANG Z, JIANG S. Automatic lung tumor segmentation from CT images using improved 3D densely connected UNet[J]. Medical & Biological Engineering & Computing, 2022, 60(11): 3311-3323. [16] KAMAL U, RAFI A M, HOQUE R, et al. Lung cancer tumor region segmentation using recurrent 3d-denseunet[C]//Thoracic Image Analysis: Second International Workshop, TIA 2020. Lima: Springer International Publishing, 2020: 36-47. [17] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. arXiv:2010. 11929 (2021-06-03) [2023-11-11]. https://doi.org/10.48550. [18] CHENG B, MISRA I, SCHWING A G, et al. Masked-attention mask transformer for universal image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 1290-1299. [19] HATAMIZADEH A, TANG Y, NATH V, et al. Unetr: transformers for 3D medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. New Orleans : IEEE, 2022: 574-584. [20] WANG S, JIANG A, LI X, et al. DPBET: a dual-path lung nodules segmentation model based on boundary enhancement and hybrid transformer[J]. Computers in Biology and Medicine, 2022, 151: 106330. [21] WANG X, LI Y. STC-Net: fusing swin transformer and convolution neural network for 2D medical Image segmentation[C]//2022 2nd International Conference on Electronic Information Engineering and Computer Technology (EIECT) . Xian: IEEE, 2022: 317-320. [22] WANG L, LI R, ZHANG C, et al. UNetFormer: a unet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 196-214. [23] CHEN J, LU Y, YU Q, et al. TransUNet: transformers make strong encoders for medical image segmentation[EB/OL]. arXiv: 2102.04306(2021-02-08) [2023-11-11]. https://arxiv.org/abs/2102.04306. [24] BJORCK J, GOMES C, SELMAN B, et al. Understanding batch normalization[C]// NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, New York: Curran Associates Incorporation, 2018: 7705–7716. [25] CAI Y, WANG Y. Ma-unet: an improved version of unet based on multi-scale and attention mechanism for medical image segmentation[C]//Third International Conference on Electronics and Communication; Network and Computer Technology (ECNCT 2021) . Xiamen: SPIE, 2022, 12167: 205-211. [26] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Vancouver : IEEE, 2018: 7132-7141. [27] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV) . Munich: Springer, 2018: 3-19. [28] ZHU X, CHENG D, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. California: IEEE, 2019: 6688-6697. [29] HUANG H, CHEN Z, ZOU Y, et al. Channel prior convolutional attention for medical image segmentation[EB/OL]. arXiv: 2306.05196 (2023-06-08) [2023-11-11]. https://arxiv.org/abs/2306.05196. [30] AERTS H J W L, VELAZQUEZ E R, LEIJENAAR R T H, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nature Communications, 2014, 5(1): 4006. [31] CAO H, WANG Y, CHEN J, et al. Swin-unet: unet-like pure transformer for medical image segmentation[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 205-218. [32] LI X, CHEN H, QI X, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674. [33] VALANARASU J M J, SINDAGI V A, HACIHALILOGLU I, et al. Kiu-net: overcomplete convolutional architectures for biomedical image and volumetric segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 41(4): 965-976. [34] LI C, QIANG Y, SULTAN R I, et al. FocalUNETR: a focal transformer for boundary-aware prostate segmentation using CT images[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023: 592-602. [35] CHEN W, WEI H, PENG S, et al. HSN: hybrid segmentation network for small cell lung cancer segmentation[J]. IEEE Access, 2019, 7: 75591-75603. [36] LE V L, SAUT O. Rrc-unet 3D for lung tumor segmentation from CT scans of non-small cell lung cancer patients[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. Paris: IEEE, 2023: 2316-2325. |
[1] | Zeng An, Pang Yao-xing, Pan Dan, Zhao Jing-liang. Segmentation of Left Ventricular Endocardium Using Direction-constrained Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2024, 41(06): 60-68.doi: 10.12052/gdutxb.230177 |
[2] | Chen Hong-qi, Luo De-xin, Lan Liang, Zhang Zhi-hao, Zhang Guo-hao. A Design of a 24-27 GHz Cascode High Gain Low Noise Amplifier [J]. Journal of Guangdong University of Technology, 2024, 41(06): 26-32.doi: 10.12052/gdutxb.230177 |
[3] | Feng Guang, Bao Long. Face Recognition Method in Complex Environment Based on Infrared Visible Fusion [J]. Journal of Guangdong University of Technology, 2024, 41(03): 62-70,109.doi: 10.12052/gdutxb.230177 |
[4] | Guo Ao, Xu Bo-yan, Cai Rui-chu, Hao Zhi-feng. Temporal Alignment Style Control in Text-to-Speech Synthesis Algorithm [J]. Journal of Guangdong University of Technology, 2024, 41(02): 84-92.doi: 10.12052/gdutxb.230177 |
[5] | Lai Zhi-mao, Zhang Yun, Li Dong. A Survey of Deepfake Detection Techniques Based on Transformer [J]. Journal of Guangdong University of Technology, 2023, 40(06): 155-167.doi: 10.12052/gdutxb.230177 |
[6] | Zhan Yin-wei, Zhu Bai-wan, Yang Zhuo. Research and Application of Vehicle Color and Model Recognition Algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(04): 9-14.doi: 10.12052/gdutxb.230177 |
[7] | Zhang Miao, Pang Zhuo-biao, Hao Xue-dong, Xie Si-wei, Zhang Xing-wang. A Research on a Transformerless Parallel Hybrid Active Power Filter [J]. Journal of Guangdong University of Technology, 2019, 36(05): 33-37.doi: 10.12052/gdutxb.230177 |
[8] | Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17.doi: 10.12052/gdutxb.230177 |
[9] | Dong Wen-hua, Li Chun-lai, Lan Xiong. Design and Experimental Analysis of an Open-close Micro Current Transformer [J]. Journal of Guangdong University of Technology, 2019, 36(04): 65-69.doi: 10.12052/gdutxb.230177 |
[10] | He Rui-wen, Xie Qiong-xiang, Cai Ze-xiang. Influence of Digital Acquisition of the Electrical Information on the Reliability of Relay Protection [J]. Journal of Guangdong University of Technology, 2013, 30(2): 68-73.doi: 10.12052/gdutxb.230177 |
[11] | Chen He-en, , Feng Kai-ping, Pan Li-pei, Wu Yue-ming, . Study of Architecture Transformation [J]. Journal of Guangdong University of Technology, 2012, 29(2): 94-96.doi: 10.12052/gdutxb.230177 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 289
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 167
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|