Journal of Guangdong University of Technology ›› 2025, Vol. 42 ›› Issue (1): 24-32.doi: 10.12052/gdutxb.230177

• Smart Medical • Previous Articles    

Lung Tumor Segmentation Method Based on Transformer and Attention Mechanisms

Zeng An1, Wang Dan1, Yang Baoyao1, Zhang Xiaobo2, Shi Zhenwei3, Liu Zaiyi3, Pan Dan4   

  1. 1. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
    3. Guangdong Provincial People's Hospital, Guangzhou 510080, China;
    4. School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665, China
  • Received:2023-11-11 Published:2025-01-06

Abstract: The accurate segmentation of lung tumors plays a crucial role in tumor diagnosis and treatment. However, lung tumor segmentation is often challenged by several issues such as low contrast between lesions and surrounding tissues, tumor-normal tissue adhesion, and high background noise. To address these, this study introduces a lung tumor segmentation method based on Transformer and attention mechanisms. In the Transformer encoder stage, both global and local attention mechanisms are incorporated to enable the network to simultaneously focus on both global and local contextual information. In the skip connection stage, a channel-prior convolutional attention mechanism is utilized to enhance the spatial perception ability for complex lesions and reduce the channel dimension redundancy, such that the tumor segmentation accuracy can be improved. The experimental results on the private GDPH and public LUNG1 datasets demonstrate that the proposed method outperforms eight comparative methods in terms of the Dice metric by achieving approximately 90.96% and 88.18% on the two datasets, respectively. The proposed method can provide reliable assistance for clinical diagnosis and treatment.

Key words: lung tumor, medical image segmentation, convolutional neural networks, Transformer, attention mechanisms

CLC Number: 

  • TP391.4
[1] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA: A Cancer Journal for Clinicians, 2023, 73(1): 17-48.
[2] KASINATHAN G, JAYAKUMAR S, GANDOMI A H. Automated 3-D lung tumor detection and classification by an active contour model and CNN classifier[J]. Expert Systems with Applications, 2019, 134: 112-119.
[3] 刘桂红, 赵亮, 孙劲光, 等. 一种改进粒子群优化算法的Otsu图像阈值分割方法[J]. 计算机科学, 2016, 43(3): 309-312.
LIU G H, ZHAO L, SUN J G, et al. Otsu image threshold segmentation method based on improved particle swarm optimization[J]. Computer Science, 2016, 43(3): 309-312.
[4] 贾鹤鸣, 李瑶, 姜子超, 等. 基于改进共生生物搜索算法的林火图像多阈值分割[J]. 计算机应用, 2021, 41(5): 1465-1470.
JIA H M, LI Y, JIANG Z C, et al. Multi-threshold segmentation of forest fire images based on modified symbiotic organisms search algorithm[J]. Journal of Computer Applications, 2021, 41(5): 1465-1470.
[5] MALATHI M, SINTHIA P, JALALDEEN K. Active contour based segmentation and classification for pleura diseases based on Otsu’s thresholding and support vector machine (SVM) [J]. Asian Pacific Journal of Cancer Prevention: APJCP, 2019, 20(1): 167.
[6] GOPI K, SELVAKUMAR J. Lung tumor area recognition and classification using EK-mean clustering and SVM[C]//2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2) . Tamil Nadu: IEEE, 2017: 97-100.
[7] SANGAMITHRAA P B, GOVINDARAJU S. Lung tumour detection and classification using EK-Mean clustering[C]//2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) . Chennai : IEEE, 2016: 2201-2206.
[8] MI H, PETITJEAN C, DUBRAY B, et al. Automatic lung tumor segmentation on PET images based on random walks and tumor growth model[C]//2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) . Beijing: IEEE, 2014: 1385-1388.
[9] JONES J L, XIE X, ESSA E. Combining region-based and imprecise boundary-based cues for interactive medical image segmentation[J]. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30(12): 1649-1666.
[10] YANG B, XIANG D, YU F, et al. Lung tumor segmentation based on the multi-scale template matching and region growing[C]//Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging. Houston: SPIE, 2018, 10578: 645-651.
[11] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Santiago: IEEE, 2015: 3431-3440.
[12] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Munich: Springer International Publishing, 2015: 234-241.
[13] DUTANDE P, BAID U, TALBAR S. Deep residual separable convolutional neural network for lung tumor segmentation[J]. Computers in Biology and Medicine, 2022, 141: 105161.
[14] YANG J, WU B, LI L, et al. MSDS-UNet: a multi-scale deeply supervised 3D U-Net for automatic segmentation of lung tumor in CT[J]. Computerized Medical Imaging and Graphics, 2021, 92: 101957.
[15] ZHANG G, YANG Z, JIANG S. Automatic lung tumor segmentation from CT images using improved 3D densely connected UNet[J]. Medical & Biological Engineering & Computing, 2022, 60(11): 3311-3323.
[16] KAMAL U, RAFI A M, HOQUE R, et al. Lung cancer tumor region segmentation using recurrent 3d-denseunet[C]//Thoracic Image Analysis: Second International Workshop, TIA 2020. Lima: Springer International Publishing, 2020: 36-47.
[17] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. arXiv:2010. 11929 (2021-06-03) [2023-11-11]. https://doi.org/10.48550.
[18] CHENG B, MISRA I, SCHWING A G, et al. Masked-attention mask transformer for universal image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 1290-1299.
[19] HATAMIZADEH A, TANG Y, NATH V, et al. Unetr: transformers for 3D medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. New Orleans : IEEE, 2022: 574-584.
[20] WANG S, JIANG A, LI X, et al. DPBET: a dual-path lung nodules segmentation model based on boundary enhancement and hybrid transformer[J]. Computers in Biology and Medicine, 2022, 151: 106330.
[21] WANG X, LI Y. STC-Net: fusing swin transformer and convolution neural network for 2D medical Image segmentation[C]//2022 2nd International Conference on Electronic Information Engineering and Computer Technology (EIECT) . Xian: IEEE, 2022: 317-320.
[22] WANG L, LI R, ZHANG C, et al. UNetFormer: a unet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 196-214.
[23] CHEN J, LU Y, YU Q, et al. TransUNet: transformers make strong encoders for medical image segmentation[EB/OL]. arXiv: 2102.04306(2021-02-08) [2023-11-11]. https://arxiv.org/abs/2102.04306.
[24] BJORCK J, GOMES C, SELMAN B, et al. Understanding batch normalization[C]// NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, New York: Curran Associates Incorporation, 2018: 7705–7716.
[25] CAI Y, WANG Y. Ma-unet: an improved version of unet based on multi-scale and attention mechanism for medical image segmentation[C]//Third International Conference on Electronics and Communication; Network and Computer Technology (ECNCT 2021) . Xiamen: SPIE, 2022, 12167: 205-211.
[26] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Vancouver : IEEE, 2018: 7132-7141.
[27] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV) . Munich: Springer, 2018: 3-19.
[28] ZHU X, CHENG D, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. California: IEEE, 2019: 6688-6697.
[29] HUANG H, CHEN Z, ZOU Y, et al. Channel prior convolutional attention for medical image segmentation[EB/OL]. arXiv: 2306.05196 (2023-06-08) [2023-11-11]. https://arxiv.org/abs/2306.05196.
[30] AERTS H J W L, VELAZQUEZ E R, LEIJENAAR R T H, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nature Communications, 2014, 5(1): 4006.
[31] CAO H, WANG Y, CHEN J, et al. Swin-unet: unet-like pure transformer for medical image segmentation[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 205-218.
[32] LI X, CHEN H, QI X, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674.
[33] VALANARASU J M J, SINDAGI V A, HACIHALILOGLU I, et al. Kiu-net: overcomplete convolutional architectures for biomedical image and volumetric segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 41(4): 965-976.
[34] LI C, QIANG Y, SULTAN R I, et al. FocalUNETR: a focal transformer for boundary-aware prostate segmentation using CT images[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023: 592-602.
[35] CHEN W, WEI H, PENG S, et al. HSN: hybrid segmentation network for small cell lung cancer segmentation[J]. IEEE Access, 2019, 7: 75591-75603.
[36] LE V L, SAUT O. Rrc-unet 3D for lung tumor segmentation from CT scans of non-small cell lung cancer patients[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. Paris: IEEE, 2023: 2316-2325.
[1] Zeng An, Pang Yao-xing, Pan Dan, Zhao Jing-liang. Segmentation of Left Ventricular Endocardium Using Direction-constrained Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2024, 41(06): 60-68.doi: 10.12052/gdutxb.230177
[2] Chen Hong-qi, Luo De-xin, Lan Liang, Zhang Zhi-hao, Zhang Guo-hao. A Design of a 24-27 GHz Cascode High Gain Low Noise Amplifier [J]. Journal of Guangdong University of Technology, 2024, 41(06): 26-32.doi: 10.12052/gdutxb.230177
[3] Feng Guang, Bao Long. Face Recognition Method in Complex Environment Based on Infrared Visible Fusion [J]. Journal of Guangdong University of Technology, 2024, 41(03): 62-70,109.doi: 10.12052/gdutxb.230177
[4] Guo Ao, Xu Bo-yan, Cai Rui-chu, Hao Zhi-feng. Temporal Alignment Style Control in Text-to-Speech Synthesis Algorithm [J]. Journal of Guangdong University of Technology, 2024, 41(02): 84-92.doi: 10.12052/gdutxb.230177
[5] Lai Zhi-mao, Zhang Yun, Li Dong. A Survey of Deepfake Detection Techniques Based on Transformer [J]. Journal of Guangdong University of Technology, 2023, 40(06): 155-167.doi: 10.12052/gdutxb.230177
[6] Zhan Yin-wei, Zhu Bai-wan, Yang Zhuo. Research and Application of Vehicle Color and Model Recognition Algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(04): 9-14.doi: 10.12052/gdutxb.230177
[7] Zhang Miao, Pang Zhuo-biao, Hao Xue-dong, Xie Si-wei, Zhang Xing-wang. A Research on a Transformerless Parallel Hybrid Active Power Filter [J]. Journal of Guangdong University of Technology, 2019, 36(05): 33-37.doi: 10.12052/gdutxb.230177
[8] Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17.doi: 10.12052/gdutxb.230177
[9] Dong Wen-hua, Li Chun-lai, Lan Xiong. Design and Experimental Analysis of an Open-close Micro Current Transformer [J]. Journal of Guangdong University of Technology, 2019, 36(04): 65-69.doi: 10.12052/gdutxb.230177
[10] He Rui-wen, Xie Qiong-xiang, Cai Ze-xiang. Influence of Digital Acquisition of the Electrical Information on the Reliability of Relay Protection [J]. Journal of Guangdong University of Technology, 2013, 30(2): 68-73.doi: 10.12052/gdutxb.230177
[11] Chen He-en, , Feng Kai-ping, Pan Li-pei, Wu Yue-ming, . Study of Architecture Transformation [J]. Journal of Guangdong University of Technology, 2012, 29(2): 94-96.doi: 10.12052/gdutxb.230177
Viewed
Full text
289
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 11 278

  From Others local
  Times 47 242
  Rate 16% 84%

Abstract
167
Just accepted Online first Issue
0 17 150
  From local
  Times 167
  Rate 100%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!