Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (06): 26-32.doi: 10.12052/gdutxb.240115
• Integrated Circuit Science and Engineering • Previous Articles
Chen Hong-qi1, Luo De-xin2, Lan Liang1, Zhang Zhi-hao2, Zhang Guo-hao2
CLC Number:
[1] FU J, BARDEH M G, PARAMESH J, et al. A millimeter-wave concurrent LNA in 22-nm CMOS FDSOI for 5G applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 71(3): 1031-1043. [2] QIAN Y, SHEN Y, HU S. Millimeter-wave CMOS low-noise amplifier with high gain and compact footprint[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(6): 699-702. [3] DAS T. Practical considerations for low noise amplifier design[J]. Freescale Semiconductor, 2013, 10: 1-10. [4] XING Z, LIANG Q, XU R. A Design on silicon-based millimeter-wave low noise amplifier circuits[C]//2024 IEEE 7th International Conference on Electronic Information and Communication Technology (ICEICT). Xi’an: IEEE, 2024: 757-759. [5] XU H, WEN K. Design of a 20-to-40 GHz millimetre-wave ultra-wideband low noise amplifier in 55-nm CMOS[C]//2024 20th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). Guangzhou: IEEE, 2024: 1-6. [6] ARIAS-PURDUE A, GUIDRY M, LAM E, et al. Inductive source degeneration in 40-nm GaN HEMTs for operation above 100 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 72(1): 26-35. [7] HU Y, CHI T. A systematic approach to designing broadband millimeter-wave cascode common-source with inductive degeneration low noise amplifiers[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(4): 1489-1502. [8] KHYALIA S K, ZELE R H, CHIONG C C, et al. A 22-33-GHz Gm-boosting low-power noise-canceling LNA in 40-nm CMOS process[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(7): 4017-4027. [9] FENG G, ZHENG L, WANG Y, et al. A 0.5-V 0.88-mW low noise amplifier with active and passive Gm enhancements in sub-6 GHz band[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(8): 1159-1162. [10] KE J, LIN Z, FENG G, et al. A 52–73-GHz LNA with tri-coupled transformer for Gm-boosting and enhanced noise canceling[J]. IEEE Journal of Solid-State Circuits, 2024, 59(3): 668-676. [11] HAN A, LUO X. A 60-GHz current-reused cascode noise-canceling low noise amplifier[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 1-1. [12] KOBAL E, SIRIBURANON T, STASZEWSKI R B, et al. A compact, low-power, low-NF, millimeter-wave cascode LNA with magnetic coupling feedback in 22-nm FD-SOI CMOS for 5G applications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 70(4): 1331-1335. [13] GUO S, XI T, GUI P, et al. A transformer feedback Gm-boosting technique for gain improvement and noise reduction in mm-wave cascode LNAs[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(7): 2080-2090. [14] WALLING J S, SHEKHAR S, ALLSTOT D J. A Gm-boosted current-reuse LNA in 0.18 μm CMOS[C]//2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. Honolulu: IEEE, 2007: 613-616. [15] URAIN A, DEL RIO D, GURUTZEAZA I, et al. Design and layout considerations of a D-Band SiGe LNA for radiometric applications[C]//2021 XXXVI Conference on Design of Circuits and Integrated Systems (DCIS). Vila do Conde, Portugal: IEEE, 2021: 1-5. [16] STEFANOVSKA A, WANG Z G. Ka-Band LNA design using systematic circuit design methodology and design applicable equations[C]//2022 7th International Conference on Integrated Circuits and Microsystems (ICICM). Xi'an: IEEE, 2022: 86-91. [17] KONG S, LEE H D, JANG S, et al. A 28-GHz CMOS LNA with stability-enhanced Gm-boosting technique using transformers[C]//2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). Boston: IEEE, 2019: 7-10. [18] QIN P, XUE Q. Compact wideband LNA with gain and input matching bandwidth extensions by transformer[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(7): 657-659. [19] HEDAYATI M K, ABDIPOUR A, SHIRAZI R S, et al. A 33-GHz LNA for 5G wireless systems in 28-nm bulk CMOS[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(10): 1460-1464. [20] LEE S, HONG S. Frequency-reconfigurable dual-band low-noise amplifier with interstage Gm-boosting for millimeter-wave 5G communication[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(4): 463-466. [21] TAERQ M M H, JAHAN N, HOSSAIN Q D. Design of a millimeter-wave band LNA using SIW resonator in 180-nm CMOS technology[C]//2023 6th International Conference on Electrical Information and Communication Technology (EICT). Boston: IEEE, 2023: 1-5. [22] RADPOUR M, BELOSTOTSKI L. Wideband LNA employing intrinsic feedback and back-gate resistance for noise and input power matching[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 72(6): 3373-3386. |
[1] | Zhang Yao, Zhang Zhi-hao, Zhang Guo-hao. A GaN Low Noise Amplifier for 5G Millimeter Wave Band n257 and n258 Applications [J]. Journal of Guangdong University of Technology, 2022, 39(06): 68-72.doi: 10.12052/gdutxb.240115 |
[2] | Heng Yuan, Wu Jian-cheng, Yang Zhi-jun. A Fixed-point Design of Control Algorithm Based on FPGA [J]. Journal of Guangdong University of Technology, 2020, 37(03): 55-58.doi: 10.12052/gdutxb.240115 |
|