Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (03): 1-17.doi: 10.12052/gdutxb.240008
• Feature Article • Next Articles
Sui Jian-bo, Li Lian, Chen Jin-hu, Wang Xiang-yun, Wang Cheng-yong
CLC Number:
[1] Wikipedia Contributors. Human digestive system[EB/OL]. (2024-03-02) [2024-03-11]. https://en.wikipedia.org/w/index.php?title=Human_ digestive_system&oldid=1211385739. [2] MUKHTAR K, NAWAZ H, ABID S. Functional gastrointestinal disorders and gut-brain axis: what does the future hold? [J]. World Journal of Gastroenterology, 2019, 25(5): 552-566. [3] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA:a Cancer Journal for Clinicians, 2021, 71(3): 209-249. [4] HAWKES N. Cancer survival data emphasise importance of early diagnosis [J]. BMJ, 2019, 364: l408. [5] World Health Organization. Cancer[EB/OL]. (2022-02-03) [2024-01-01]. https://www.who.int/zh/news-room/fact-sheets/detail/cancer. [6] GRIFFIN-SOBEL J P. Gastrointestinal cancers: screening and early detection[J]. In Seminars in Oncology Nursing, 2017, 33(2) : 165-171. [7] DELVAUX M, GERARD G. Capsule endoscopy in 2005: facts and perspectives [J]. Best Practice & Research Clinical Gastroenterology, 2006, 20(1): 23-39. [8] AKPUNONU B, HUMMELL J, AKPUNONU J D, et al. Capsule endoscopy in gastrointestinal disease: evaluation, diagnosis, and treatment [J]. Cleveland Clinic Journal of Medicine, 2022, 89(4): 200-211. [9] IDDAN G, MERON G, GLUKHOVSKY A, et al. Wireless capsule endoscopy [J]. Nature, 2000, 405(6785): 417. [10] IONESCU A G, GLODEANU A D, IONESCU M, et al. Clinical impact of wireless capsule endoscopy for small bowel investigation [J]. Experimental and Therapeutic Medicine, 2022, 23(4): 1-9. [11] HONG S M, JUNG S H, BAEK D H. Diagnostic yields and clinical impacts of capsule endoscopy [J]. Diagnostics, 2021, 11(10): 1842. [12] WANG A, BANERJEE S, BARTH B A, et al. Wireless capsule endoscopy [J]. Gastrointestinal Endoscopy, 2013, 78(6): 805-815. [13] CHEN W, SUI J, WANG C. Magnetically actuated capsule robots: a review [J]. IEEE Access, 2022, 10: 88398-88420. [14] MOGLIA A, MENCIASSI A, SCHURR M O, et al. Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems [J]. Biomedical Microdevices, 2007, 9(2): 235-243. [15] SUN Z J, GU W, XIN Y, et al. Preliminary study of a novel capsule robot with spring-connected legs[J]. Advances in Mechanical Engineering, 2022, 14(3) : 16878132221085126. [16] PARK S, PARK H, PARK S, et al. A paddling based locomotive mechanism for capsule endoscopes [J]. J Mechanical Science and Technology, 2006, 20: 1012-1018. [17] ZHENG L, GUO S, KAWANISHI M. Multi modular capsule robot system with drug release for intestinal treatment [J]. IEEE Sensors Journal, 2023, 23(16): 18568-18578. [18] LEON-RODRIGUEZ H, LEE C, ZHEN J, et al. Novel active locomotive capsule endoscope with micro-hydraulic pump for drug delivery function[C]//2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob) . Singapore: IEEE, 2016: 311-316. [19] WU L, LU K. Experimental investigation of a new type of driving concept for capsule robot [J]. Intelligent Service Robotics, 2022, 15(5): 661-669. [20] GUO B, LIU Y, BIRLER R, et al. Self-propelled capsule endoscopy for small-bowel examination: proof-of-concept and model verification [J]. International Journal of Mechanical Sciences, 2020, 174: 105506. [21] ALSHORMAN A M, ABABNEH O A, ABUSHAKER A I, et al. A novel design of a locomotion system for active capsule endoscopy[C]//2021 7th International Conference on Mechatronics and Robotics Engineering (ICMRE) . Budapest: IEEE, 2021: 93-97. [22] SLAWINSKI P R, OBSTEIN K L, VALDASTRI P. Capsule endoscopy of the future: what’s on the horizon? [J]. World Journal Gastroenterology, 2015, 21(37): 10528-10541. [23] BAICHI M M, ARIFUDDIN R M, MANTRY P S. What we have learned from 5 cases of permanent capsule retention [J]. Gastrointestinal Endoscopy, 2006, 64(2): 283-287. [24] LIAO Z, GAO R, XU C, et al. Indications and detection, completion, and retention rates of small-bowel capsule endoscopy: a systematic review [J]. Gastrointestinal Endoscopy, 2010, 71(2): 280-286. [25] Food and Drug Administration. Size, shape, and other physical attributes of generic tablets and capsules[EB/OL]. (2022-10-03) [2024-01-01]. https://www.fda.gov/regulatory-information/search-fda- guidance-documents/size-shape-and-other-physical-attributes-generic-tablets-and-capsules. [26] BYRNE J, HUANG H W, MCRAE J C, et al. Devices for drug delivery in the gastrointestinal tract: a review of systems physically interacting with the mucosa for enhanced delivery [J]. Advanced Drug Delivery Reviews, 2021, 177: 113926. [27] MEDTRONIC. PillCam SB 3 capsule endoscopy system[EB/OL]. [2023-12-13]. https://www.medtronic.com/covidien/en-us /products/capsule-endoscopy/pillcam-sb-3-system.html. [28] MEDTRONIC. PillCam crohn’s capsule[EB/OL]. [2023-12-3]. https://www.medtronic.com/covidien/en-us/products /capsule-endoscopy/pillcam-crohns-system.html. [29] CHU J N, TRAVERSO G. Foundations of gastrointestinal-based drug delivery and future developments [J]. Nature Reviews Gastroenterology & Hepatology, 2022, 19(4): 219-238. [30] LU T, JI S, JIN W, et al. Biocompatible and long-term monitoring strategies of wearable, ingestible and implantable biosensors: reform the next generation healthcare [J]. Sensors, 2023, 23(6): 2991. [31] KALANTAR-ZADEH K, HA N, OU J Z, et al. Ingestible sensors [J]. ACS Sensors, 2017, 2(4): 468-483. [32] ZEISING S, CHEN L, THALMAYER A, et al. Towards differential static magnetic localization of commercial capsule endoscopes: an evaluation using different ring and cylindrical magnets [J]. Advances in Radio Science, 2023, 20: 105-112. [33] LIU L, TOWFIGHIAN S, HILA A. A review of locomotion systems for capsule endoscopy [J]. IEEE Reviews in Biomedical Engineering, 2015, 8: 138-151. [34] SWAIN P, MILLS T, KELLEHER B, et al. Radiocontrolled movement of a robot endoscope in the human gastrointestinal tract [J]. Gastrointestinal Endoscope, 2005, 61(5): AB101. [35] WOO S H, KIM T W, MOHY-UD-DIN Z, et al. Small intestinal model for electrically propelled capsule endoscopy [J]. Biomedical Engineering Online, 2011, 10(1): 1-20. [36] PHEE L, ACCOTO D, MENCIASSI A, et al. Analysis and development of locomotion devices for the gastrointestinal tract [J]. IEEE Transactions on Biomedical Engineering, 2002, 49(6): 613-619. [37] KIM B, LEE S, PARK J H, et al. Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs) [J]. IEEE/ASME Trans Mechatronics, 2005, 10: 77-86. [38] KIM B, PARK S, PARK J O. Microrobots for a capsule endoscope[C] //IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Singapore: IEEE, 2009: 729-734. [39] CARTA R, TORTORA G, THONÉ J, et al. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection [J]. Biosensors and Bioelectronics, 2009, 25(4): 845-51. [40] SFAKIOTAKIS M, PATEROMICHELAKIS N, TSAKIRIS D P. Vibration-induced frictional reduction in miniature intracorporeal robots [J]. IEEE Transactions on Robotics, 2014, 30(5): 1210-21. [41] BEYNA T, SCHNEIDER M, PULLMANN D, et al. Motorized spiral colonoscopy: a first single-center feasibility trial [J]. Endoscopy, 2018, 50(5): 518-523. [42] SELIMAGIC A, DOZIC A, HUSIC-SELIMOVIC A. The role of novel motorized spiral enteroscopy in the diagnosis of cecal tumors [J]. Diseases, 2022, 10(4): 79. [43] MAHONEY A W, ABBOTT J J. Control of untethered magnetically actuated tools with localization uncertainty using a rotating permanent magnet[C] //2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) . Rome: IEEE, 2012: 1632-1637. [44] LECLERC J, ZHAO H, BECKER A T. 3D control of rotating millimeter-scale swimmers through obstacles[C] //2019 International Conference on Robotics and Automation (ICRA) . Montreal: IEEE, 2019: 8890-8896. [45] XU Y, LI K, ZHAO Z, et al. On reciprocally rotating magnetic actuation of a robotic capsule in unknown tubular environments [J]. IEEE Transactions on Medical Robotics and Bionics, 2021, 3(4): 919-927. [46] CHOI J, CHOI H, CHA K, et al. Two-dimensional locomotive permanent magnet using electromagnetic actuation system with two pairs stationary coils[C]//2009 IEEE International Conference on Robotics and Biomimetics (ROBIO) . Guilin: IEEE, 2009: 1166-1171. [47] ERIN O, GILBERT H B, TABAK A F, et al. Elevation and azimuth rotational actuation of an untethered millirobot by MRI gradient Coils [J]. IEEE Transactions on Robotics, 2019, 35(6): 1323-1337. [48] ZHANG Y, LIU X, LIU G, et al. Design and implementation of a highly integrated dual hemisphere capsule robot [J]. Biomedical Microdevices, 2022, 24(1): 10. [49] YE D, XUE J, YUAN S, et al. Design and control of a magnetically-actuated capsule robot with biopsy function [J]. IEEE Transactions on Biomedical Engineering, 2022, 69(9): 2905-2915. [50] ZHANG J, LIU Y, ZHU D, et al. Simulation and experimental studies of a vibro-impact capsule system driven by an external magnetic field [J]. Nonlinear Dynamics, 2022, 109(3): 1501-1516. [51] REHAN M, AL-BAHADLY I, THOMAS D G, et al. Measurement of peristaltic forces exerted by living intestine on robotic capsule [J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(4): 1803-1811. [52] ZHOU H, ALICI G, MUNOZ F. A magnetically actuated anchoring system for a wireless endoscopic capsule [J]. Biomedical Microdevices, 2016, 18: 1-9. [53] SIMI M, GERBONI G, MENCIASSI A, et al. Magnetic torsion spring mechanism for a wireless biopsy capsule [J]. Journal of Medical Devices, 2013, 7(4): 041009. [54] ZHOU H, ALICI G. A novel magnetic anchoring system for wireless capsule endoscopes operating within the gastrointestinal tract [J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1106-1116. [55] SONG S, YUAN S, ZHANG F, et al. Integrated design and decoupled control of anchoring and drug release for wireless capsule robots [J]. IEEE/ASME Transactions on Mechatronics, 2021, 27(5): 2897-2907. [56] ZHANG F, YE D, SONG S, et al. Design of a novel biopsy capsule robot with anchoring function for intestinal tract[C]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO) . Dali: IEEE, 2019: 1471-1476. [57] PETRUSKA A J, NELSON B J. Minimum bounds on the number of electromagnets required for remote magnetic manipulation [J]. IEEE Transactions on Robotics, 2015, 31(3): 714-722. [58] BOEHLER Q, GERVASONI S, CHARREYRON S L, et al. On the workspace of electromagnetic navigation systems [J]. IEEE Transactions on Robotics, 2023, 39(1): 791-807. [59] ABBOTT J J. Parametric design of tri-axial nested Helmholtz coils [J]. Review of Scientific Instruments, 2015, 86(5): 054701. [60] ZHENG L, GUO S, WANG Z, et al. A multi-functional module-based capsule robot [J]. IEEE Sensors Journal, 2021, 21(10): 12057-12067. [61] SONG L, DAI Y, WANG L, et al. Motion control of capsule robot based on adaptive magnetic levitation using electromagnetic coil [J]. IEEE Transactions on Automation Science and Engineering, 2023, 20(4): 2720-2731. [62] SONG S, SONG S, MENG Q H. Electromagnetic actuation system using stationary six-pair coils for three-dimensional wireless locomotive microrobot[C]//2017 IEEE International Conference on Information and Automation (ICIA) . Macau: IEEE, 2017: 305-310. [63] WANG L, LI P, FENG X, et al. Analyzing the influence of square Maxwell coil’s assembly errors on the uniformity of magnetic field gradient [J]. AIP Advances, 2023, 13(3): 035106. [64] LEE C, CHOI H, GO G, et al. Active locomotive intestinal capsule endoscope (ALICE) system: a prospective feasibility study [J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(5): 2067-2074. [65] LEE C, CHOI H, GO G, et al. Feasibility study of electromagnetic guidance system for intestinal capsule endoscope[C] //2016 IEEE International Conference on Robotics and Biomimetics (ROBIO) . Qingdao: IEEE, 2016: 1542-1547. [66] REY J F, OGATA H, HOSOE N, et al. Feasibility of stomach exploration with a guided capsule endoscope [J]. Endoscopy, 2010, 42(7): 541-545. [67] KELLER H, JULOSKI A, KAWANO H, et al. Method for navigation and control of a magnetically guided capsule endoscope in the human stomach[C]//2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) . Rome: IEEE, 2012: 859-865. [68] NIU F, LI J, MA W, et al. Development of an enhanced electromagnetic actuation system with enlarged workspace [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 2265-2276. [69] KUMMER M P, ABBOTT J J, KRATOCHVIL B E, et al. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation [J]. IEEE Transactions on Robotics, 2010, 26(6): 1006-1017. [70] SON D, DOGAN M D, SITTI M. Magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy[C]//2017 IEEE International Conference on Robotics and Automation (ICRA) . Singapore: IEEE, 2017: 1132-1139. [71] SUN H, LIU J, WANG Q. Magnetic actuation systems and magnetic robots for gastrointestinal examination and treatment [J]. Chinese Journal of Electrical Engineering, 2023, 9(1): 3-28. [72] SUN H, LIU J, WANG L, et al. A novel control method of magnetic navigation capsule endoscope for gastrointestinal examination [J]. IEEE Transactions on Magnetics, 2022, 58(1): 1-9. [73] ABBOTT J J, PEYER K E, LAGOMARSINO M C, et al. How should microrobots swim? [J]. The International Journal of Robotics Research, 2009, 28(11-12): 1434-1447. [74] LECLERC J, ISICHEI B, BECKER A T. A magnetic manipulator cooled with liquid nitrogen [J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4367-4374. [75] BRODSKY L M. Wireless capsule endoscopy [J]. Issues in Emerging Health Technologies, 2003, 53: 1-4. [76] OHTA H, KATSUKI S, DOI T, et al. Magnetic navigation of capsule endoscopes assisted by wireless real-time monitoring [J]. Endoscopy, 2011, 43: A326. [77] LIAO Z, HOU X, LIN-HU E Q, et al. Accuracy of magnetically controlled capsule endoscopy, compared with conventional gastroscopy, in detection of gastric diseases [J]. Clinical Gastroenterology and Hepatology, 2016, 14(9): 1266-1273. [78] PITTIGLIO G, BARDUCCI L, MARTIN J W, et al. Magnetic levitation for soft-tethered capsule colonoscopy actuated with a single permanent magnet: a dynamic control approach [J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1224-1231. [79] MAHONEY A W, ABBOTT J J. Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy [J]. The International Journal of Robotics Research, 2016, 35(1-3): 129-147. [80] LUCARINI G, MURA M, CIUTI G, et al. Electromagnetic control system for capsule navigation: novel concept for magnetic capsule maneuvering and preliminary study [J]. Journal of Medical and Biological Engineering, 2015, 35: 428-436. [81] SIKORSKI J, HEUNIS C M, FRANCO F, et al. The ARMM system: an optimized mobile electromagnetic coil for non-linear actuation of flexible surgical instruments [J]. IEEE Transactions on Magnetics, 2019, 55(9): 1-9. [82] WRIGHT S E, MAHONEY A W, POPEK K M, et al. The Spherical-actuator-magnet manipulator: a permanent-magnet robotic end-effector [J]. IEEE Transactions on Robotics, 2017, 33(5): 1013-1024. [83] POPEK K M, HERMANS T, ABBOTT J J. First demonstration of simultaneous localization and propulsion of a magnetic capsule in a lumen using a single rotating magnet[C] //2017 IEEE International Conference on Robotics and Automation (ICRA) . Singapore: IEEE, 2017: 1154-1160. [84] RYAN P, DILLER E. Five-degree-of-freedom magnetic control of micro-robots using rotating permanent magnets[C] //2016 IEEE International Conference on Robotics and Automation (ICRA) . Stockholm: IEEE, 2016: 1731-1736. [85] RYAN P, DILLER E. Magnetic actuation for full dexterity microrobotic control using rotating permanent magnets [J]. IEEE Transactions on Robotics, 2017, 33(6): 1398-1409. [86] YANG L, DU X, YU E, et al. DeltaMag: an electromagnetic manipulation system with parallel mobile coils[C]//2019 International Conference on Robotics and Automation (ICRA) . Montreal: IEEE, 2019: 9814-9820. [87] ZHANG Y, WANG N, DU C, et al. Control theorem of a universal uniform-rotating magnetic vector for capsule robot in curved environment [J]. Science China Technological Sciences, 2013, 56: 359-368. [88] ZHANG Y, BAI J, CHI M, et al. Optimal control of a universal rotating magnetic vector for petal-shaped capsule robot in curve environment [J]. Chinese Journal of Mechanical Engineering, 2014, 27(5): 880-889. [89] TENG Z, LIU J, SUN H, et al. Research on driving force of capsule endoscope in fluid [J]. Archive of Applied Mechanics, 2023, 93(12): 4387-4398. [90] LIANG L, CHEN B, TANG Y, et al. Operational performance analysis of spiral capsule robot in multiphase fluid [J]. Robotica, 2019, 37(2): 213-232. [91] EQTAMI A, FELFOUL O, DUPONT P E. MRI-powered closed-loop control for multiple magnetic capsules[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2014: 3536-3542. [92] ZARYCHTA S, BALCERZAK M, DENYSENKO V, et al. Optimization of the closed-loop controller of a discontinuous capsule drive using a neural network [J]. Meccanica, 2023, 58(2-3): 537-553. [93] YE B, FU Y, ZHANG S, et al. Closed-loop active control of the magnetic capsule endoscope with a robotic arm based on image navigation [J]. Journal of Magnetism and Magnetic Materials, 2023, 565: 170268. [94] XU Y, LI K, ZHAO Z, et al. A novel system for closed-loop simultaneous magnetic actuation and localization of WCE based on external sensors and rotating actuation [J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(4): 1640-1652. [95] THAN T D, ALICI G, HARVEY S, et al. An effective localization method for robotic endoscopic capsules using multiple positron emission markers [J]. IEEE Transactions on Robotics, 2014, 30(5): 1174-86. [96] JEONG S, KANG J, PAHLAVAN K, et al. Fundamental limits of TOA/DOA and inertial measurement unit-based wireless capsule endoscopy hybrid localization [J]. International Journal of Wireless Information Networks, 2017, 24: 169-79. [97] VEDAEI S S, WAHID K A. A localization method for wireless capsule endoscopy using side wall cameras and IMU sensor [J]. Scientific Reports, 2021, 11(1): 11204. [98] REN H, KAZANZIDES P. Investigation of attitude tracking using an integrated inertial and magnetic navigation system for hand-held surgical instruments [J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(2): 210-7. [99] SPYROU E, IAKOVIDIS D K. Video-based measurements for wireless capsule endoscope tracking [J]. Measurement Science and Technology, 2013, 25(1): 015002. [100] GENG Y, PAHLAVAN K. Design, implementation, and fundamental limits of image and RF based wireless capsule endoscopy hybrid localization [J]. IEEE Transactions on Mobile Computing, 2015, 15(8): 1951-64. [101] ALSUNAYDIH F N, YUCE M R. Next-generation ingestible devices: sensing, locomotion and navigation [J]. Physiological Measurement, 2021, 42(4): 04TR01. [102] GLEICH B, SCHMALE I, NIELSEN T, et al. Miniature magneto-mechanical resonators for wireless tracking and sensing [J]. Science, 2023, 380(6648): 966-971. [103] TURAN M, ALMALIOGLU Y, ORNEK E P, et al. Magnetic-visual sensor fusion-based dense 3d reconstruction and localization for endoscopic capsule robots[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) . Madrid: IEEE, 2018: 1283-1289. [104] HU C, LI M, SONG S, et al. A cubic 3-axis magnetic sensor array for wirelessly tracking magnet position and orientation [J]. IEEE Sensors Journal, 2010, 10(5): 903-913. [105] YE B, FANG G, HU J, et al. A novel positioning method for magnetic spiral-type capsule endoscope using an adaptive LMS algorithm [J]. Journal of Magnetism and Magnetic Materials, 2022, 563: 169939. [106] HUA D, LIU X, DU H, et al. Positioning a magnetically controlled capsule robot based on double-layer symmetric sensor array [J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-12. [107] WANG M, SHI Q, SONG S, et al. A novel relative position estimation method for capsule robot moving in gastrointestinal tract [J]. Sensors, 2019, 19(12): 2746. [108] WU X, SONG S, WANG J. Calibration-by-pivoting: a simple and accurate calibration method for magnetic tracking system [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-9. [109] FU Q, FAN C, WANG X, et al. A compensation method for magnetic localization on capsule robot in medical application [J]. IEEE Sensors Journal, 2021, 21(23): 26690-26698. [110] LIU S L, KIM J, KANG B, et al. Three-dimensional localization of a robotic capsule endoscope using magnetoquasistatic field [J]. IEEE Access, 2020, 8: 141159-141169. [111] LIU S L, KIM J, HONG A, et al. Six-dimensional localization of a robotic capsule endoscope using magnetoquasistatic field [J]. IEEE Access, 2022, 10: 22865-22874. [112] HOANG M C, KIM J, PARK J, et al. Six-DOF localization using magnetic induction effect for automated locomotion of an active capsule endoscope[C]//2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob) . Seoul: IEEE, 2022: 1-6. [113] TADDESE A Z, SLAWINSKI P R, PIROTTA M, et al. Enhanced real-time pose estimation for closed-loop robotic manipulation of magnetically actuated capsule endoscopes [J]. International Journal of Robotics Research, 2018, 37(8): 890-911. [114] XU Y, LI K, ZHAO Z, et al. Adaptive simultaneous magnetic actuation and localization for WCE in a tubular environment [J]. IEEE Transactions on Robotics, 2022, 38(5): 2812-2826. [115] HOANG M C, LIU S, NGUYEN K T, et al. DEMA: robotic dual-electromagnet actuation system integrated with localization for a magnetic capsule endoscope [J]. Sensors and Actuators A:Physical, 2023, 361: 114596. [116] CHETCUTI ZAMMIT S, SIDHU R. Capsule endoscopy-recent developments and future directions [J]. Expert Review of Gastroenterology & Hepatology, 2021, 15(2): 127-137. [117] OH D J, KIM K S, LIM Y J. A new active locomotion capsule endoscopy under magnetic control and automated reading program [J]. Clinical Endoscopy, 2020, 53(4): 395-401. [118] RONDONOTTI E, KOULAOUZIDIS A, KARARGYRIS A, et al. Utility of 3-dimensional image reconstruction in the diagnosis of small-bowel masses in capsule endoscopy (with video) [J]. Gastrointestinal Endoscopy, 2014, 80(4): 642-651. [119] POHL J, MAY A, RABENSTEIN T, et al. Computed virtual chromoendoscopy: a new tool for enhancing tissue surface structures [J]. Endoscopy, 2007, 39(1): 80-83. [120] AOKI T, YAMADA A, AOYAMA K, et al. Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network [J]. Gastrointestinal Endoscopy, 2019, 89(2): 357-363. [121] SAITO H, AOKI T, AOYAMA K, et al. Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network [J]. Gastrointestinal Endoscopy, 2020, 92(1): 144-151. [122] SOFFER S, KLANG E, SHIMON O, et al. Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis [J]. Gastrointestinal Endoscopy, 2020, 92(4): 831-839. [123] YANG Y J. The Future of capsule endoscopy: the role of artificial intelligence and other technical advancements [J]. Clinical Endoscopy, 2020, 53(4): 387-394. [124] MOEN S, VUIK F E, KUIPERS E J, et al. Artificial intelligence in colon capsule endoscopy-a systematic review [J]. Diagnostics, 2022, 12(8): 1994. [125] LE V H, RODRIGUEZ H L, LEE C, et al. A soft-magnet-based drug-delivery module for active locomotive intestinal capsule endoscopy using an electromagnetic actuation system [J]. Sensors and Actuators A:Physical, 2016, 243: 81-89. [126] NGUYEN K T, HOANG M C, CHOI E, et al. Medical microrobot—a drug delivery capsule endoscope with active locomotion and drug release mechanism: proof of concept [J]. International Journal of Control, Automation and Systems, 2020, 18: 65-75. [127] CAI Z, FU Q, ZHANG S, et al. Performance evaluation of a magnetically driven microrobot for targeted drug delivery [J]. Micromachines, 2021, 12(10): 1210. [128] LEE J, LEE H, KWON S, et al. Active delivery of multi-layer drug-loaded microneedle patches using magnetically driven capsule [J]. Medical Engineering & Physics, 2020, 85: 87-96. [129] LEE J, SOHN S W, LEE H, et al. Open-close mechanism of magnetically actuated capsule for multiple hemostatic microneedle patch delivery [J]. International Journal of Control, Automation and Systems, 2022, 20(7): 2285-2296. [130] SARKER S, WANKUM B, PEREY T, et al. A novel capsule-delivered enteric drug-injection device for delivery of systemic biologics: a pilot study in a porcine model [J]. IEEE Transactions on Biomedical Engineering, 2021, 69(6): 1870-1879. [131] ZHOU H, ALICI G. A magnetically actuated novel robotic capsule for site-specific drug delivery inside the gastrointestinal tract [J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 52(6): 4010-4020. [132] HOANG M C, LE V H, NGUYEN K T, et al. A robotic biopsy endoscope with magnetic 5-DOF locomotion and a retractable biopsy punch [J]. Micromachines, 2020, 11(1): 98. [133] SON D, GILBERT H, SITTI M. Magnetically actuated soft capsule endoscope for fine-needle biopsy [J]. Soft Robotics, 2020, 7(1): 10-21. [134] LE V H, HERNANDO LR, LEE C, et al. Shape memory alloy-based biopsy device for active locomotive intestinal capsule endoscope [J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2015, 229(3): 255-263. [135] LE V H, NGUYEN V D, LEE C, et al. Miniaturized biopsy module using gripper tool for active locomotive capsule endoscope [J]. Mechatronics, 2017, 44: 52-59. [136] SONG Z, ZHANG W, ZHANG W, et al. A novel biopsy capsule robot based on high-speed cutting tissue[J]. Cyborg and Bionic Systems, 2022(1):118-128. [137] GUO S, HUANG F, GUO J, et al. Study on the active movement capsule robot for biopsy[C] //2020 IEEE International Conference on Mechatronics and Automation (ICMA) . Beijing: IEEE, 2020: 1780-1785. [138] HOANG M C, LE V H, KIM J, et al. Untethered robotic motion and rotating blade mechanism for actively locomotive biopsy capsule endoscope [J]. IEEE Access, 2019, 7: 93364-93374. [139] PARK S, LEE H, KIM D I, et al. Active multiple-sampling capsule for gut microbiome [J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 4384-4395. [140] NAM J, LAI Y P, GAUTHIER L, et al. Resonance-based design of wireless magnetic capsule for effective sampling of microbiome in gastrointestinal tract [J]. Sensors and Actuators A:Physical, 2022, 342: 113654. |
[1] | Guo Ao, Xu Bo-yan, Cai Rui-chu, Hao Zhi-feng. Temporal Alignment Style Control in Text-to-Speech Synthesis Algorithm [J]. Journal of Guangdong University of Technology, 2024, 41(02): 84-92.doi: 10.12052/gdutxb.240008 |
[2] | Zhang Cheng-ke, Xu Meng, Yang Lu. Nash Differential Game for Discrete-time Markov Jump System with Partially Unknown Transition Probabilities [J]. Journal of Guangdong University of Technology, 2024, 41(02): 129-138.doi: 10.12052/gdutxb.240008 |
[3] | Jiang Chuan-xing, Yang Zhi-jun, Chen Xin, Bai You-dun. Design and Control of Constant Force Control Components Based on Disturbance Conversion Compensation [J]. Journal of Guangdong University of Technology, 2023, 40(06): 52-61.doi: 10.12052/gdutxb.240008 |
[4] | Li Yang, Zhou Ying. Differential Privacy Trajectory Data Publishing Based on Orientation Control [J]. Journal of Guangdong University of Technology, 2023, 40(05): 56-63.doi: 10.12052/gdutxb.240008 |
[5] | Mo Shi-yin, Zhu Huai-nian. N-agent and Mean Field Game for Optimal Investment and Risk Control Strategies [J]. Journal of Guangdong University of Technology, 2023, 40(05): 123-132.doi: 10.12052/gdutxb.240008 |
[6] | Wu Man, Zhang Li-li. Finite-time Partial State Components Synchronization Control for Complex Dynamical Networks with Nonidentical Nodes [J]. Journal of Guangdong University of Technology, 2023, 40(04): 94-101.doi: 10.12052/gdutxb.240008 |
[7] | Liu Xi-jun, Gu Ai-yu, Pang Cheng-jie. Robust Model Predictive Control for PMSM Base on PID-type Cost Function [J]. Journal of Guangdong University of Technology, 2023, 40(03): 67-73.doi: 10.12052/gdutxb.240008 |
[8] | Qiu Jun-hao, Cheng Zhi-jian, Lin Guo-huai, Ren Hong-ru, Lu Ren-quan. Prescribed Performance Control for a Class of Nonlinear Pure-feedback Systems with Actuator Faults [J]. Journal of Guangdong University of Technology, 2023, 40(02): 55-63.doi: 10.12052/gdutxb.240008 |
[9] | Gu Zhi-hua, Peng Shi-guo, Huang Yu-jia, Feng Wan-dian, Zeng Zi-xian. Leader-following Consensus of Nonlinear Multi-agent Systems with ROUs and RONs via Event-triggered Impulsive Control [J]. Journal of Guangdong University of Technology, 2023, 40(01): 50-55.doi: 10.12052/gdutxb.240008 |
[10] | Huang Fang, Qiu Yu-fu, Guo Jing. Dynamic Modeling and H∞ Control Method of an MRI-compatible Hydraulically Needle Insertion Robot [J]. Journal of Guangdong University of Technology, 2023, 40(01): 68-76.doi: 10.12052/gdutxb.240008 |
[11] | Liu Yang, Peng Shi-guo, Ma Hong-zhi, Liao Wei-xin. Dynamic Parameter Identification and Gait Tracking of Lower Limb Exoskeleton Robot [J]. Journal of Guangdong University of Technology, 2022, 39(06): 44-52.doi: 10.12052/gdutxb.240008 |
[12] | Wu Qing-jie, Cui Miao, Zhang Guang-chi, Chen Wei. End-to-End Throughput Maximization for UAV-Enabled Data Collection Systems [J]. Journal of Guangdong University of Technology, 2022, 39(06): 53-61.doi: 10.12052/gdutxb.240008 |
[13] | Zhang Miao, Wu Shi-yu, Wen Jun-ming, Feng Chun-shou, Guan Yi-chuan. Active Disturbance Rejection Controller Strategy for Shunt Hybrid Active Power Filters [J]. Journal of Guangdong University of Technology, 2022, 39(06): 62-67.doi: 10.12052/gdutxb.240008 |
[14] | Wei You-xing, Luo Xiang-long, Hu Ling-feng, Chen Jian-yong, Liang Ying-zong, Yang Zhi, Chen Ying. Optimization Method of Organic Rankine Cycle System Based on Time Series Aggregation [J]. Journal of Guangdong University of Technology, 2022, 39(06): 98-106.doi: 10.12052/gdutxb.240008 |
[15] | Guo Heng-fa, Li Xing-sen. A Structure Extension Design of Shuttle Shelf in AS/RS [J]. Journal of Guangdong University of Technology, 2022, 39(06): 123-129.doi: 10.12052/gdutxb.240008 |
|