Journal of Guangdong University of Technology ›› 2012, Vol. 29 ›› Issue (2): 7-14.doi: doi:10.3969/j.issn.1007-7162.2012.02.002

• Forum on Extension • Previous Articles     Next Articles

Recent Research Progress in Dependent Functions in Extension Sets

  

  1. Research Institute of Extension Engineering,Guangdong University of Technology, Guangzhou 510090 China
  • Online:2012-06-25 Published:2012-06-25
  • Supported by:

    杨春燕(1964-),女,研究员,广东工业大学可拓工程研究所所长,主要研究方向为可拓学、知识管理、决策科学、数据挖掘

Abstract: Following Cantor set and fuzzy set, extension set is another basic set put forward by Chinese scholars. It explored the degrees that research objects possessed certain characteristics and their transformations from transformable perspective. The degrees were weighed quantitatively by the use of dependent functions. Then, they were used to study changing classifications, classified changes and the transforming of contradictory problems.  The differentiation and affiliation of the three sets mentioned above were analyzed, and the recent research progress in the formation of elementary dependent functions in extension sets was introduced. The farther lucubrating for dependent functions in extension sets will have important scientific significance and applied values for  extension strategy generating system, extension data mining, extension control and extension detecting, etc.

Key words: extension set; dependent function; extension classification; contradictory problem; transformation

[1] 蔡文.可拓集合和不相容问题[J]. 科学探索学报, 1983(1):83-97.

           Cai Wen. Extension set and noncompatible Problems [J].  Science Exploration,1983(1):83-97.

[2] 蔡文. 可拓论及其应用[J]. 科学通报,1999,44(7):673-682.

          Cai Wen. Extension theory and its application[J]. Chinese Science Bulletin,1999,44(7):673-682.

[3] 杨春燕,蔡文. 可拓工程[M]. 北京:科学出版社,2007.

[4] 徐伟宣. 可拓学研究的科学意义[A]. 可拓学的科学意义与未来发展[C]. 香山科学会议第271次学术会议,2005: 19-22.

〖DW〗Xu Weixuan. Scientific Significance of Extenics Research[A]. Extenics: Its Scientific Significance and Future Development[C]. The 271-st- Science Conference of Xiangshan Science Conferences,2005:1922.

[5] 杨春燕,李卫华,李小妹. 矛盾问题智能化处理的理论与方法研究进展[J]. 广东工业大学学报,2011,28(1):8693.

〖DW〗Yang Chunyan,Li Weihua,Li Xiaomei. Recent research progress in theories and methods for the intelligent disposal of contradictory problems [J].Journal of Guangdong University of Technology,2011,28(1):86-93.

[6] 蔡文,石勇.可拓学的科学意义与未来发展[J].哈尔滨工业大学学报,2006,38(7):1079-1086.

           Cai Wen, Shi Yong. Extenics: its significance in science and prospects in application [J]. Journal of Harbin Institute of Technology,2006,38(7):1079-1086.

[7] Jie Wang,A. Grдser,Extension Set Theory, Extension Engineering Method and Extension System Control[EB/OL].[2012-04-06].http:∥www.acadjournal.com/2001/v5/part5/p1/.

[8] YingChen Lee, Nobuyoshi Terashima.An extenicsbased intelligent distance learning system[J].IJCSNS: International Journal of Computer Science and Network Security, 2011, 11(5):57-63.

[9] Der-Fu Tao, LiangTeh Lee. An extenicsbased load balancing mechanism in distributed computing systems[J]. International Journal of Computer Science and Network Security(IJCSNS),2006,6(2B):70-76.
[10] Feng Liu, Florentin Smarandache. Toward Dialectic Matter Element of Extenics Model[A]. Multispace & Multistructure Neutrosophic Transdisciplinarity (100 Collected) [C].

Finland Hanko:NorthEuropean Scientific Publishers,  2010:420-430.

[11] 蔡文, 杨春燕, 陈文伟,等. 可拓集与可拓数据挖掘[M]. 北京:科学出版社,2008.

[12]  刘宏志, 邓小云, 刘宣旭,等. 基于可拓集的软件工程安全监理的研究[J].计算机安全,2011(12):32-35

               Liu Hongzhi, Deng Xiaoyun, Liu Xuanxu,et al. Research on software project security surveillance based on extensible set [J]. Computer Security,2011(12):32-35.

[13] 李立希, 杨春燕, 李铧汶. 可拓策略生成系统[M]. 北京:科学出版社,2006.

[14] 赵燕伟,苏楠. 可拓设计[M]. 北京:科学出版社,2010.

[15] 王洪伟, 吴家春, 蒋馥. 基于可拓集的决策模型研究[J].计算机科学,2003,30(8):130-134.

、         Wang Hongwei, Wu Jiachun, Jiang Fu. Study on decision model based on extension set [J]. Computer Science,2003,30(8):130-134.

[16] 余永权. 可拓检测技术[J]. 中国工程科学, 2001,3(4):88-94.

〖DW〗Yu Yongquan. Extension detecting technology [J]. Engineering Science, 2001,3( 4):88-94.

[17] 胡宝清,王孝礼,何娟娟. 区间上的可拓集及其关联函数[J]. 广东工业大学学报, 2000, 17(2):101-104.

              Hu Baoqing,Wang Xiaoli,He Juanjuan. Extension set and the independent function on intervals [J]. Journal of Guangdong University of Technology,2000,17(2):101-104.

[18] 李桥兴,刘思峰. 基于区间距和区间侧距的初等关联函数构造[J]. 哈尔滨工业大学学报, 2006,38(7):1097-1100.

              Li Qiaoxing,Liu Sifeng. The method to construct interval elementary dependent function based on the interval distance and sidedistance [J]. Journal of Harbin Institute of Technology,2006,38(7):1097-1100.

[19] 李桥兴,刘思峰. 一般位值公式及一般初等关联函数构造方法[J]. 系统工程,2006,24(6):116-118.

              Li Qiaoxing,Liu Sifeng. A method to construct the general location value and general elementary dependent function [J]. Systems Engineering,2006,24(6):116-118.

[20] 陈薇.可拓学中关联函数的构造及零界的确定[J].数学的实践与认识,2009,39(4):154-159.

             Chen Wei.The structure of dependent function and determination of zero boundary on the extenics [J]. Mathematics in Practice and Theory,2009,39(4):154-159.

[21] 蔡文. 物元模型及其应用[M]. 北京:科学技术文献出版社,1994.

[22] 蔡文. 物元分析[M]. 广州:广东高等教育出版社,1987.

[23] 杨春燕. 事元及其应用[J]. 系统工程理论与实践,1998,18(2):80-86.

             Yang Chunyan. Affairelement and its application [J].Systems EngineeringTheory & Practice,1998,18(2):80-86.

[24] 蔡文, 杨春燕,何斌. 可拓逻辑初步[M]. 北京:科学出版社,2003.

[25] 蔡文, 杨春燕,何斌. 可拓学基础理论研究的新进展[J]. 中国工程科学,2003,5(2):80-87.

             Cai Wen, Yang Chunyan,He Bin. New development of the basic theory of extenics [J]. Engineering Science,2003,5(2):80-87.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!