Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (03): 89-94.doi: 10.12052/gdutxb.210055
Previous Articles Next Articles
Zeng Jiang-yi, Li Zhi-sheng, Ou Yao-chun, Jin Yu-kai
CLC Number:
[1] FAN H, ZHAO C F, YANG Y K. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018 [J]. Atmospheric Environment, 2020, 220(117066): 1-12. [2] 王玮, 汤大钢, 刘红杰, 等. 中国PM2.5污染状况和污染特征的研究[J]. 环境科学研究, 2000(1): 1-5. WANG W, TANG D G, LIU H J, et al. Research on corrent pollution sataus and pollution characteristics of PM2.5 in China [J]. Research of Environmental Sciences, 2000(1): 1-5. [3] 甘阳阳, 李志生. 空气幕对厨房内PM2.5控制效果的模拟与分析[J]. 广东工业大学学报, 2020, 37(3): 82-87. GAN Y Y, LI Z S. A numerical effect on PM2.5 in the kitchen [J]. Journal of Guangdong University of Technology, 2020, 37(3): 82-87. [4] 张洪. 京津冀地区空气质量时空分布特征及PM2.5浓度预测[D]. 哈尔滨: 哈尔滨师范大学, 2020. [5] XU X D, TONG T, ZHANG W, et al. Fine-grained prediction of PM2.5 concentration based on multisource data and deep learning [J]. Atmospheric Pollution Research, 2020, 11(10): 1728-1737. [6] MASOOD A, AHMAD K. A model for particulate matter PM2.5 prediction for Delhi based on machine learning approaches [J]. Procedia Computer Science, 2020, 167(1): 2101-2110. [7] 张怡文, 郭傲东, 吴海龙, 等. 基于PCA-BP神经网络的PM2.5季节性预测方法研究[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 231-238. ZHANG Y W, GUO A D, WU H L, et al. Seasonal prediction of PM2.5 based on the PCA-BP neural network [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(5): 231-238. [8] HE H D, LI M, WANG W L, et al. Prediction of PM2.5 concentration based on the similarity in air quality monitoring network [J]. Building and Environment, 2018, 137(1): 11-17. [9] ASHA B C. Estimating PM2.5 concentration from satellite derived aerosol optical depth and meteorological variables using a combination model [J]. Atmospheric Pollution Research, 2019, 10(3): 847-857. [10] LIU Z R, HU B, WANG L L, et al. Seasonal and diurnal variation in particulate matter (PM 10 and PM 2.5 ) at an urban site of Beijing: analyses from a 9-year study [J]. Environmental Science and Pollution Research, 2015, 22(1): 627-642. [11] 李梓铭, 孙兆彬, 邵勰, 等. 北京城区PM2.5不同时间尺度周期性研究[J]. 中国环境科学, 2017, 37(2): 407-415. LI Z M, SUN Z B, SHAO X, et al. Using Morlet wavelet analysis to analyze multiple time scale periodically in PM2.5 in Beijing [J]. China Environmental Science, 2017, 37(2): 407-415. [12] 广东省统计局. 广东省第七次全国人口普查公报[EB/OL]. (2021-05-15)[2021-05-30]. http://stats.gd.gov.cn/attachment/0/421/421374/3284452.pdf. [13] 何丹, 徐宝平, 吴丽芳, 等. 江西省典型城市气象因素对PM2.5和PM10污染特征影响分析——以萍乡市为例[J]. 能源研究与管理, 2020(4): 42-46. HE D, XU B P, WU L F, et al. Analysis of the impact of meteorological factors on the pollution characteristics of PM2.5 and PM10 in the typical cities of Jiangxi Province—taking Pingxiang city as an example [J]. Energy Research and Mangement, 2020(4): 42-46. [14] 焦晨, 黄艳然, 赵钦风, 等. 时间序列分解模型在山东省糖尿病门诊量预测中的应用[J]. 中国农村卫生事业管理, 2021, 41(2): 93-97. JIAO C, HUANG Y R, ZHAO Q F, et al. Application of time series decomposition model to the predictionof the number of diabetics in Shandong Province [J]. Chinese Rural Health Service Administration, 2021, 41(2): 93-97. [15] 郑薇, 王灿强, 李维德. 基于季节指数调整与HGWO-SVR算法的农产品价格预测模型[J]. 统计与决策, 2018, 34(19): 33-37. ZHENG W, WANG C Q, LI W D. Forecasting model of agricultural products prices based on seasonal index adjustment and HGWO-SVR algorithm[J]. Statistics Decision, 2018, 34(19): 33-37. [16] 郭秀英, 尹兴国, 张艳云. 季节性波动时间序列预测的分解季节指数法[J]. 数理统计与管理, 2000(6): 60-64. GUO X Y, YIN X G, ZHANG Y Y. The analysis method of seasonal index number of time sequence of seasonal fluctuation [J]. Journal of Applied Statistics and Management, 2000(6): 60-64. [17] XU W, REN G, LIU Y, et al. Forecasting energy consumption using a new GM–ARMA model based on HP filter: the case of Guangdong Province of China [J]. Economic Modelling, 2015, 45(1): 127-135. [18] 陈通箭. 基于改进小波神经网络的高速公路季节性车流量预测模型[J]. 智能城市, 2020, 6(3): 22-24. CHEN T J. Seasonal traffic flow prediction model of expressway based on improved wavelet neural network[J]. Intelligent City, 2020, 6(3): 22-24. [19] SUN S, RAPPAPORT T S, RANGAN S, et al. Propagation path loss models for 5G urban micro-and macro-cellular scenarios[C]// 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring). Nanjing: IEEE, 2016: 1-6. [20] 谢劭峰, 赵云, 李国弘, 等. 基于WPA-WOA-BP神经网络的PM2.5浓度预测[J]. 大地测量与地球动力学, 2021, 41(1): 12-16. XIE S F, ZHAO Y, LI G H, et al. Prediction of PM2.5 concentration based on WPA-WOA-BP neural network [J]. Journal of Geodesy and Geodynamics, 2021, 41(1): 12-16. [21] 王徐凯, 余华银, 杨桂元, 等. 基于多层组合模型的武汉市月平均PM2.5浓度预测[J]. 牡丹江师范学院学报(自然科学版), 2021(1): 7-11. WANG X K, YU H Y, YANG G Y, et al. Prediction of nonthly average PM2.5 concentration based on multilayer combination model: a case study of Wuhan [J]. Journal of Mudanjiang Normal University(Natural Sciences Edition), 2021(1): 7-11. [22] 郭骐嘉, 姚宜斌, 周永江. 融合GNSS气象参数的PM2.5随机森林预测模型[J]. 测绘科学, 2021, 46(4): 37-42. GUO Q J, YAO Y B, ZHOU Y J. PM2.5 random forest prediction model incorporating GNSS meteorological parameters[J]. Science of Surveying and Mapping, 2021, 46(4): 37-42. [23] 王赛兰. 基于多元方法和时间序列的PM2.5浓度分析与预测[D]. 长沙: 湖南师范大学, 2019. [24] 魏朋志, 谢劭峰, 周志浩, 等. 节假日效应下的PM2.5浓度预测[J/OL]. 桂林理工大学学报, 2021: 1-7(2021-03-03)[2021-03-22]. http://kns.cnki.net/kcms/detail/45.1375.N.20210303.1307.004.html. WEI P Z, XIE S F, ZHOU Z H, et al. PM2.5 concentration prediction under holiday effect [J/OL]. Journal of Guilin University of Technology, 2021: 1-7 (2021-03-03)[2021-03-22]. http://kns.cnki.net/kcms/detail/45.1375.N.20210303.1307.004.html. [25] 陈兵红, 靳全锋, 柴红玲, 等. 浙江省大气PM2.5时空分布及相关因子分析[J]. 环境科学学报, 2021: 41(3): 817-829. CHEN B H, JIN Q F, CHAI H L, et al. Spatiotemporal distribution and correlation factors of PM2. 5 concentrations in Zhejiang Province[J]. Acta Scientiae Circumstantiae, 2021: 41(3): 817-829. |
[1] | Qiu Jun-hao, Cheng Zhi-jian, Lin Guo-huai, Ren Hong-ru, Lu Ren-quan. Prescribed Performance Control for a Class of Nonlinear Pure-feedback Systems with Actuator Faults [J]. Journal of Guangdong University of Technology, 2023, 40(02): 55-63. |
[2] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8. |
[3] | Zhan Yin-wei, Zhu Bai-wan, Yang Zhuo. Research and Application of Vehicle Color and Model Recognition Algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(04): 9-14. |
[4] | Wu Jia-hu, Xiong Hua, Zong Rui, Zhao Yao, Zhou Xian-zhong. Target Turning Maneuver Type Recognition Based on Recurrent Neural Networks [J]. Journal of Guangdong University of Technology, 2020, 37(02): 67-73. |
[5] | Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17. |
[6] | Xie Zhen-dong, Liu Xue-qin, Wu Jin-cheng, Leng Meng-tian. A Study of Passenger Flow Prediction Based on IC Card Data [J]. Journal of Guangdong University of Technology, 2018, 35(01): 16-22. |
[7] | Peng Shi-you, Peng Shi-guo. Passivity Analysis for Uncertain Neural Networks with Time-Varying Delay [J]. Journal of Guangdong University of Technology, 2017, 34(01): 78-83,89. |
[8] | YAO Lei. A Novel Parameter Optimization Algorithm for Mamdani Fuzzy Neural Networks Based on PSO [J]. Journal of Guangdong University of Technology, 2014, 31(1): 36-39. |
[9] | Xie Zu-wei,Peng Shi-guo,Luo Ying-hua . The Asymptotic Stability of Networks with Leakage Delays [J]. Journal of Guangdong University of Technology, 2009, 26(1): 13-. |
[10] | Luo Ying-hua,Peng Shi-guo . The Global Exponential Stability of Negative Feedback Terms with Continuous Time-delays of BAM Neural Network [J]. Journal of Guangdong University of Technology, 2009, 26(1): 14-. |
[11] | LIU Wei,CAI Qian-feng. Neural Networks Representation of Decision Models [J]. Journal of Guangdong University of Technology, 2007, 24(03): 24-27. |
|