Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (06): 1-8.doi: 10.12052/gdutxb.210109
Gary Yen1, Li Bo2, Xie Sheng-li2
CLC Number:
[1] LEWIS J M, LAKSHMIVARAHAN S, DHALL S. Dynamic data assimilation: a least squares approach[M]. Cambridge: Cambridge University Press, 2006. [2] MOIN P, MAHESH K. Direct numerical simulation: a tool in turbulence research [J]. Annual Review of Fluid Mechanics, 1998, 30(1): 539-578. [3] POLAT O, TUNCER I H. Aerodynamic shape optimization of wind turbine blades using a parallel genetic algorithm [J]. Procedia Engineering, 2013, 61: 28-31. [4] LUCIA D J, BERAN P S, SILVA W A. Reduced-order modeling: new approaches for computational physics [J]. Progress in Aerospace Sciences, 2004, 40(1-2): 51-117. [5] TAIRA K, BRUNTON S L, DAWSON S T M, et al. Modal analysis of fluid flows: an overview [J]. Aiaa Journal, 2017, 55(12): 4013-4041. [6] BENNER P, GUGERCIN S, WILLCOX K. A survey of projection-based model reduction methods for parametric dynamical systems [J]. SIAM Review, 2015, 57(4): 483-531. [7] XIAO D, FANG F, PAIN C, et al. Non-intrusive reduced-order modelling of the Navier-Stokes equations based on RBF interpolation [J]. International Journal for Numerical Methods in Fluids, 2015, 79(11): 580-595. [8] HESTHAVEN J S, UBBIALI S. Non-intrusive reduced order modeling of nonlinear problems using neural networks [J]. Journal of Computational Physics, 2018, 363: 55-78. [9] PAWAR S, RAHMAN S M, VADDIREDDY H, et al. A deep learning enabler for nonintrusive reduced order modeling of fluid flows [J]. Physics of Fluids, 2019, 31(8): 085101. [10] SCHNEIDER T, LAN S, STUART A, et al. Earth system modeling 2.0: a blueprint for models that learn from observations and targeted high-resolution simulations [J]. Geophysical Research Letters, 2017, 44(24): 12396-12417. [11] O'GORMAN P A, DWYER J G. Using machine learning to parameterize moist convection: potential for modeling of climate, climate change, and extreme events [J]. Journal of Advances in Modeling Earth Systems, 2018, 10(10): 2548-2563. [12] REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven earth system science [J]. Nature, 2019, 566(7743): 195-204. [13] MOHAN A T, GAITONDE D V. A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks[EB/OL]. arXiv preprint arXiv: 1804.09269, 2018. [2021-07-02]. http://export.arxiv.org/abs/1804.09269. [14] RAHMAN S M, PAWAR S, SAN O, et al. Nonintrusive reduced order modeling framework for quasigeostrophic turbulence [J]. Physical Review E, 2019, 100(5): 053306. [15] TAN C, SUN F, KONG T, et al. A survey on deep transfer learning[C]//International Conference on Artificial Neural Networks. Switzerland: Springer, Cham, 2018: 270-279. [16] MJOLSNESS E, DECOSTE D. Machine learning for science: state of the art and future prospects [J]. Science, 2001, 293(5537): 2051-2055. [17] BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics [J]. Annual Review of Fluid Mechanics, 2020, 52: 477-508. [18] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks [J]. Advances in Neural Information Processing Systems, 2012, 25: 1097-1105. [19] ELSKEN T, METZEN J H, HUTTER F. Neural architecture search: a survey [J]. The Journal of Machine Learning Research, 2019, 20(1): 1997-2017. [20] HOLMES P, LUMLEY J L, BERKOOZ G, et al. Turbulence, coherent structures, dynamical systems and symmetry[M]. Cambridge: Cambridge University Press, 2012. [21] ROWLEY C W, DAWSON S T M. Model reduction for flow analysis and control [J]. Annual Review of Fluid Mechanics, 2017, 49: 387-417. [22] PATHAK J, HUNT B, GIRVAN M, et al. Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach [J]. Physical Review Letters, 2018, 120(2): 024102. [23] VLACHAS P R, BYEON W, WAN Z Y, et al. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474(2213): 20170844. [24] MAULIK R, MOHAN A, LUSCH B, et al. Time-series learning of latent-space dynamics for reduced-order model closure [J]. Physica D: Nonlinear Phenomena, 2020, 405: 132368. [25] AHMED S E, RAHMAN S M, SAN O, et al. Memory embedded non-intrusive reduced order modeling of non-ergodic flows [J]. Physics of Fluids, 2019, 31(12): 126602. [26] WAN Z Y, VLACHAS P, KOUMOUTSAKOS P, et al. Data-assisted reduced-order modeling of extreme events in complex dynamical systems [J]. PloS One, 2018, 13(5): e0197704. [27] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780. [28] XIE L, YUILLE A. Genetic CNN[C]//Proceedings of the IEEE International Conference on Computer Vision.Venice: IEEE, 2017: 1379-1388. [29] SUN Y, XUE B, ZHANG M, et al. Automatically designing CNN architectures using the genetic algorithm for image classification [J]. IEEE Transactions on Cybernetics, 2020, 50(9): 3840-3854. [30] SUN Y, YEN G G, YI Z. Evolving unsupervised deep neural networks for learning meaningful representations [J]. IEEE Transactions on Evolutionary Computation, 2018, 23(1): 89-103. [31] SUN Y, WANG H, XUE B, et al. Surrogate-assisted evolutionary deep learning using an end-to-end random forest-based performance predictor [J]. IEEE Transactions on Evolutionary Computation, 2019, 24(2): 350-364. [32] SUN Y, XUE B, ZHANG M, et al. Evolving deep convolutional neural networks for image classification [J]. IEEE Transactions on Evolutionary Computation, 2019, 24(2): 394-407. [33] SUN Y, XUE B, ZHANG M, et al. Completely automated CNN architecture design based on blocks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(4): 1242-1254. [34] ZHOU Y, YEN G G, YI Z. Evolutionary compression of deep neural networks for biomedical image segmentation [J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(8): 2916-2929. [35] DROZDZAL M, VORONTSOV E, CHARTRAND G, et al. The importance of skip connections in biomedical image segmentation[C]//Deep learning and data labeling for medical applications. Switzerland: Springer, 2016: 179-187. [36] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 770-778. [37] MAULIK R, LUSCH B, BALAPRAKASH P. Non-autoregressive time-series methods for stable parametric reduced-order models [J]. Physics of Fluids, 2020, 32(8): 087115. |
[1] | Liu Dong-ning, Wang Zi-qi, Zeng Yan-jiao, Wen Fu-yan, Wang Yang. Prediction Method of Gene Methylation Sites Based on LSTM with Compound Coding Characteristics [J]. Journal of Guangdong University of Technology, 2023, 40(01): 1-9. |
[2] | Xu Wei-feng, Cai Shu-ting, Xiong Xiao-ming. Visual Inertial Odometry Based on Deep Features [J]. Journal of Guangdong University of Technology, 2023, 40(01): 56-60,76. |
[3] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
[4] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8. |
[5] | Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61. |
[6] | Lai Jun, Liu Zhen-yu, Liu Sheng-hai. A Small Sample Data Prediction Method Based on Global Data Shuffling [J]. Journal of Guangdong University of Technology, 2021, 38(03): 17-21. |
[7] | Cen Shi-jie, He Yuan-lie, Chen Xiao-cong. A Monocular Depth Estimation Combined with Attention and Unsupervised Deep Learning [J]. Journal of Guangdong University of Technology, 2020, 37(04): 35-41. |
[8] | Zeng Bi, Ren Wan-ling, Chen Yun-hua. An Unpaired Face Illumination Normalization Method Based on CycleGAN [J]. Journal of Guangdong University of Technology, 2018, 35(05): 11-19. |
[9] | Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37. |
[10] | Chen Xu, Zhang Jun, Chen Wen-wei, Li Shuo-hao. Convolutional Neural Network Algorithm and Case [J]. Journal of Guangdong University of Technology, 2017, 34(06): 20-26. |
[11] | Liu Zhen-yu, Li Jia-jun, Wang Kun. A Fingerprint Matching Localization Method Based on Deep Auto Encoder [J]. Journal of Guangdong University of Technology, 2017, 34(05): 15-21. |
[12] | HE Yong, WEN Jie-Chang, HUANG Mei-Hua. The Three Layers of Large-scale Emergency Material Allocation Strategy Based on the GA [J]. Journal of Guangdong University of Technology, 2016, 33(02): 37-41. |
[13] | LI Ling-Yu, GUO Gui-Fa, XU Jin-Biao. Optimizing and Adjusting the Parameter of PID Based on Simulated Annealing Genetic Algorithms [J]. Journal of Guangdong University of Technology, 2010, 27(2): 80-83. |
[14] | Song Hua-bing1,2,Zhang Xin-zhen2. A Study of Time-delay Uncertain Water Quality Model BOD-DO [J]. Journal of Guangdong University of Technology, 2008, 25(3): 66-69. |
|