Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (04): 24-30,36.doi: 10.12052/gdutxb.220018
• Computer Science and Technology • Previous Articles Next Articles
Zhang Jia-yue, Zhang Ling
CLC Number:
[1] ZAGORUYKO S, KOMODAKIS N. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer[EB/OL]. arXiv: 1612.03928(2017-02-12)[2022-01-30].https://doi.org/10.48550/arXiv.1612.03928. [2] CHEN Z, ZHENG X, SHEN H, et al. Improving knowledge distillation via category structure[C]//16th European Conference on Computer Vision. Glasgow: Springer, 2020: 205-219. [3] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. arXiv: 1503.02531(2015-03-09)[2022-01-30]. https://doi.org/10.48550/arXiv.1503.02531. [4] MÜLLER R, KORNBLITH S, HINTON G. When does label smoothing help?[C]//Annual Conference on Neural Information Processing Systems 2019. Vancouver: MIT Press, 2019: 4694-4703. [5] DING Q, WU S, SUN H, et al. Adaptive regularization of labels[EB/OL]. arXiv: 1908.05474(2019-08-15)[2022-01-30].https://doi.org/10.48550/arXiv.1908.05474. [6] ROMERO A, BALLAS N, KAHOU S E, et al. FitNets: hints for thin deep nets[EB/OL]. arXiv: 1412.6550(2015-03-27)[2022-01-30].https://doi.org/10.48550/arXiv.1412.6550. [7] JANG Y, LEE H, HWANG S J, et al. Learning what and where to transfer[C]//Proceedings of the 36th International Conference on Machine Learning. Long Beach: PMLR, 2019: 3030-3039. [8] HUANG Z, WANG N. Like what you like: knowledge distill via neuron selectivity transfer[EB/OL]. arXiv: 1707.012197(2017-12-18)[2022-01-30].https://doi.org/10.48550/arXiv.1707.01219. [9] WANG K, GAO X, ZHAO Y, et al. Pay attention to features, transfer learn faster CNNs[EB/OL]. (2019-09-26)[2022-01-30].https://openreview.net/forum?id=ryxyCeHtPB. [10] PARK W, KIM D, LU Y, et al. Relational knowledge distillation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 3967-3976. [11] PENG B, JIN X, LIU J, et al. Correlation congruence for knowledge distillation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 5007-5016. [12] LIU Y, CAO J, LI B, et al. Knowledge distillation via instance relationship graph[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 7096-7104. [13] LI X, WU J, FANG H, et al. Local correlation consistency for knowledge distillation[C]//16th European Conference on Computer Vision. Glasgow: Springer, 2020: 18-33. [14] TIAN Y, KRISHNAN D, ISOLA P. Contrastive representation distillation[EB/OL]. arXiv: 1910.10699(2022-01-24)[2022-01-30].https://doi.org/10.48550/arXiv.1910.10699. [15] CHEN D, MEI J P, ZHANG Y, et al. Cross-layer distillation with semantic calibration[C]//Thirty-Fifth AAAI Conference on Artificial Intelligence. Virtual Event: AAAI, 2021, 35(8): 7028-7036. [16] YUN S, PARK J, LEE K, et al. Regularizing class-wise predictions via self-knowledge distillation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 13873-13882. [17] ZEILER M D, TAYLOR G W, FERGUS R. Adaptive deconvolutional networks for mid and high level feature learning[C]//2011 International Conference on Computer Vision. Barcelona: IEEE, 2011: 2018-2025. [18] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 2921-2929. [19] SELVARAJU R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359. [20] LI K, WU Z, PENG K C, et al. Tell me where to look: guided attention inference network[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 9215-9223. [21] VAN O A, KALCHBRENNER N, KAVUKCUOGLU K. Pixel recurrent neural networks[C]//Proceedings of the 33nd International Conference on Machine Learning. New York: JMLR. org, 2016: 1747-1756. |
[1] | Dai Bin, Zeng Bi, Wei Peng-fei, Huang Yong-jian. A Task-oriented Dialogue Policy Learning Method of Improved Discriminative Deep Dyna-Q [J]. Journal of Guangdong University of Technology, 2023, 40(04): 9-17,23. |
[2] | Zhong Geng-jun, Li Dong. A Channel-splited Based Dual-branch Block for 3D Point Cloud Processing [J]. Journal of Guangdong University of Technology, 2023, 40(04): 18-23. |
[3] | Wu Ya-di, Chen Ping-hua. A Music Recommendation Model Based on Users' Long and Short Term Preferences and Music Emotional Attention [J]. Journal of Guangdong University of Technology, 2023, 40(04): 37-44. |
[4] | Lin Zhe-huang, Li Dong. Semantics-guided Adaptive Topology Inference Graph Convolutional Networks for Skeleton-based Action Recognition [J]. Journal of Guangdong University of Technology, 2023, 40(04): 45-52. |
[5] | Huang Xiao-yong, Li Wei-tong. Fall Detection Algorithm Based on TSSI and STB-CNN [J]. Journal of Guangdong University of Technology, 2023, 40(04): 53-59. |
[6] | Chen Xiao-rong, Yang Xue-rong, Cheng Si-yuan, Liu Guo-dong. Surface Defect Detection of Lithium Battery Electrodes Based on Improved Unet Network [J]. Journal of Guangdong University of Technology, 2023, 40(04): 60-66,93. |
[7] | Cao Zhi-xiong, Wu Xiao-ling, Luo Xiao-wei, Ling Jie. Helmet Wearing Detection Algorithm Intergrating Transfer Learning and YOLOv5 [J]. Journal of Guangdong University of Technology, 2023, 40(04): 67-76. |
[8] | Lai Dong-sheng, Feng Kai-ping, Luo Li-hong. Facial Expression Recognition Based on Multi-feature Fusion [J]. Journal of Guangdong University of Technology, 2023, 40(03): 10-16. |
[9] | Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21. |
[10] | Chen Jing-yu, Lyu Yi. Frost Detection Method of Cold Chain Refrigerating Machine Based on Spiking Neural Network [J]. Journal of Guangdong University of Technology, 2023, 40(01): 29-38. |
[11] | Ye Wen-quan, Li Si, Ling Jie. Sparse-view SPECT Image Reconstruction Based on Multilevel-residual U-Net [J]. Journal of Guangdong University of Technology, 2023, 40(01): 61-67. |
[12] | Zou Heng, Gao Jun-li, Zhang Shu-wen, Song Hai-tao. Design and Implementation of a Dropping Guidance Device for Go Robot [J]. Journal of Guangdong University of Technology, 2023, 40(01): 77-82,91. |
[13] | Xie Guang-qiang, Xu Hao-ran, Li Yang, Chen Guang-fu. Consensus Opinion Enhancement in Social Network with Multi-agent Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2022, 39(06): 36-43. |
[14] | Liu Xin-hong, Su Cheng-yue, Chen Jing, Xu Sheng, Luo Wen-jun, Li Yi-hong, Liu Ba. Real Time Detection of High Resolution Bridge Crack Image [J]. Journal of Guangdong University of Technology, 2022, 39(06): 73-79. |
[15] | Xiong Wu, Liu Yi. Application of Particle Filter Algorithm in Static Deformation Monitoring of BDS High-Speed Rail [J]. Journal of Guangdong University of Technology, 2022, 39(04): 66-72. |
|