Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (03): 71-80.doi: 10.12052/gdutxb.230044
• Computer Science and Technology • Previous Articles Next Articles
Li Xue-sen1, Tan Bei-hai2, Yu Rong1, Xue Xian-bin1
CLC Number:
[1] 曹家乐, 李亚利, 孙汉卿, 等. 基于深度学习的视觉目标检测技术综述[J]. 中国图象图形学报, 2022, 27(6): 1697-1722. CAO J L, LI Y L, SUN H Q, et al. A survey on deep learning based visual object detection [J]. China Journal of Image and Graphics, 2022, 27(6): 1697-1722. [2] 戴文君, 常天庆, 张雷, 等. 图像目标检测技术在坦克火控系统中的应用[J]. 火力与指挥控制, 2020, 45(7): 147-152. DAI W J, CHANG T Q, ZHANG L, et al. Application of image target detection technology in tank fire control system [J]. Fire and Command Control, 2020, 45(7): 147-152. [3] LIO W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C] //Computer Vision–ECCV 2016: 14th European Conference. Amsterdam, Netherlands: Springer International Publishing, 2016: 21-37. [4] ZHAI S, SHANG D, WANG S, et al. DF-SSD: an improved SSD object detection algorithm based on DenseNet and feature fusion [J]. IEEE Access, 2020, 8: 24344-24357. [5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788. [6] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR) . Hawaii: IEEE, 2017: 7263-7271. [7] REDMON J, FARHADI A. Yolov3: An incremental improvement[EB/OL]. arXiv: 1804.02767 (2018-04-08) [2023-02-07]. https://arxiv.53yu.com/abs/1804.02767. [8] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[EB/OL]. arXiv: 2004.10934 (2020-04-22) [2023-02-07]. https://arxiv.org/abs/2004.10934. [9] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C] //Proceedings of the IEEE International Conference on Computer Vision. Hong Kong: IEEE, 2017: 2980-2988. [10] GIRSHICK R. Fast R-CNN[C] //Proceedings of the IEEE International Conference on Computer Vision. Santiago Chile: IEEE, 2015: 1440-1448. [11] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149. [12] PURKAIT P, ZHAO C, ZACH C. SPP-Net: deep absolute pose regression with synthetic views[EB/OL]. arXiv: 1712.03452 (2017-12-09) [2023-02-09]. https://arxiv.53yu.com/abs/1712.03452. [13] LI P, CHE C. SeMo-YOLO: a multiscale object detection network in satellite remote sensing images[C] //2021 International Joint Conference on Neural Networks (IJCNN) . Shenzhen: IEEE, 2021: 1-8. [14] TAN L, LV X, LIAN X, et al. YOLOv4_Drone: UAV image target detection based on an improved YOLOv4 algorithm [J]. Computers & Electrical Engineering, 2021, 93: 107261. [15] WANG M, LI Q, GU Y, et al. SCAF-net: Scene context attention-based fusion network for vehicle detection in aerial imagery [J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5. [16] ZHANG X, ZHOU X, LIN M, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices[C] //Proceedings of the IEEE Eonference on Computer Vision and Pattern Recognition. Wellington New Zealand: IEEE, 2018: 6848-6856. [17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C] //Proceedings of the European Conference on Computer Vision (ECCV) . Munich: EACV, 2018: 3-19. [18] GUO M H, LU C Z, LIU Z N, et al. Visual attention network [J]. Computational Visual Media, 2023, 9(4): 733-752. [19] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. arXiv: 2010.11929 (2021-06-03) [2023-02-11]. https://arxiv.53yu.com/abs/2010.11929. [20] MEHTA S, RASTEGARI M. Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer[EB/OL]. arXiv: 2110.02178 (2022-03-04) [2023-02-11]. https://arxiv.53yu.com/abs/2110.02178. |
[1] | Tu Ze-liang, Cheng Liang-lun, Huang Guo-Heng. Local Orthogonal Feature Fusion for Few-Shot Image Classification [J]. Journal of Guangdong University of Technology, 2024, 41(02): 73-83.doi: 10.12052/gdutxb.230044 |
[2] | Lai Zhi-mao, Zhang Yun, Li Dong. A Survey of Deepfake Detection Techniques Based on Transformer [J]. Journal of Guangdong University of Technology, 2023, 40(06): 155-167.doi: 10.12052/gdutxb.230044 |
[3] | Zeng An, Chen Xu-zhou, Ji Yu-Zhu, Pan Dan, Xu Xiao-Wei. Cardiac Multiclass Segmentation Method Based on Self-attention and 3D Convolution [J]. Journal of Guangdong University of Technology, 2023, 40(06): 168-175.doi: 10.12052/gdutxb.230044 |
[4] | Lai Dong-sheng, Feng Kai-ping, Luo Li-hong. Facial Expression Recognition Based on Multi-feature Fusion [J]. Journal of Guangdong University of Technology, 2023, 40(03): 10-16.doi: 10.12052/gdutxb.230044 |
[5] | Wu Jun-xian, He Yuan-lie. Channel Attentive Self-supervised Network for Monocular Depth Estimation [J]. Journal of Guangdong University of Technology, 2023, 40(02): 22-29.doi: 10.12052/gdutxb.230044 |
[6] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9.doi: 10.12052/gdutxb.230044 |
[7] | Teng Shao-hua, Dong Pu, Zhang Wei. An Attention Text Summarization Model Based on Syntactic Structure Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(03): 1-8.doi: 10.12052/gdutxb.230044 |
[8] | Liang Guan-shu, Cao Jiang-zhong, Dai Qing-yun, Huang Yun-fei. An Unsupervised Trademark Retrieval Method Based on Attention Mechanism [J]. Journal of Guangdong University of Technology, 2020, 37(06): 41-49.doi: 10.12052/gdutxb.230044 |
[9] | Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17.doi: 10.12052/gdutxb.230044 |
[10] | Gao Jun-yan, Liu Wen-yin, Yang Zhen-guo. Object Tracking Combined with Attention and Feature Fusion [J]. Journal of Guangdong University of Technology, 2019, 36(04): 18-23.doi: 10.12052/gdutxb.230044 |
|