Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (04): 98-105.doi: 10.12052/gdutxb.230072
• Computer Science and Technology • Previous Articles
Chen Shu, Zhu Zheng-dong, Yang Zu-yuan, Li Zhen-ni
CLC Number:
[1] JAIN A K, MURTY M N, FLYNN P J. Data clustering: a review [J]. ACM Computing Surveys (CSUR) , 1999, 31(3): 264-323. [2] XU R, WUNSCH D. Survey of clustering algorithms [J]. IEEE Transactions on Neural Networks, 2005, 16(3): 645-678 . . [3] FOWLKES C, BELONGIE S, CHUNG F, et al. Spectral grouping using the nystrom method [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225. [4] XU D, TIAN Y. A comprehensive survey of clustering algorithms [J]. Annals of Data Science, 2015, 2: 165-193. [5] FU L, LIN P, VASILAKOS A V, et al. An overview of recent multi-view clustering [J]. Neurocomputing, 2020, 402: 148-161. [6] YANG Y, WANG H. Multi-view clustering: a survey [J]. Big Data Mining and Analytics, 2018, 1(2): 83-107. [7] CHAO G, SUN S, BI J. A survey on multiview clustering [J]. IEEE Transactions on Artificial Intelligence, 2021, 2(2): 146-168. [8] LEE C K, LIU T L. Guided co-training for multi-view spectral clustering[C]//2016 IEEE International Conference on Image Processing (ICIP) . [S.l.]: IEEE, 2016: 4042-4046. [9] KANG Z, SHI G, HUANG S, et al. Multi-graph fusion for multi-view spectral clustering [J]. Knowledge-Based Systems, 2020, 189: 105102. [10] HAO W, PANG S, ZHU J, et al. Self-weighting and hypergraph regularization for multi-view spectral clustering [J]. IEEE Signal Processing Letters, 2020, 27: 1325-1329. [11] LIANG W, ZHOU S, XIONG J, et al. Multi-view spectral clustering with high-order optimal neighborhood laplacian matrix [J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(7): 3418-3430. [12] ZHOU S, LIU X, LIU J, et al. Multi-view spectral clustering with optimal neighborhood Laplacian matrix[J]. Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(4) : 6965-6972. [13] JING P, SU Y, LI Z, et al. Learning robust affinity graph representation for multi-view clustering [J]. Information Sciences, 2021, 544: 155-167. [14] HAO W, PANG S, CHEN Z. Multi-view spectral clustering via common structure maximization of local and global representations [J]. Neural Networks, 2021, 143: 595-606. [15] JIA Y, LIU H, HOU J, et al. Multi-view spectral clustering tailored tensor low-rank representation [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(12): 4784-4797. [16] ZHAO Y, YUN Y, ZHANG X, et al. Multi-view spectral clustering with adaptive graph learning and tensor schatten p-norm [J]. Neurocomputing, 2022, 468: 257-264. [17] SHI S, NIE F, WANG R, et al. Self-weighting multi-view spectral clustering based on nuclear norm [J]. Pattern Recognition, 2022, 124: 108429. [18] KUMAR A, RAI P, DAUME H. Co-regularized multi-view spectral clustering[J]. Advances in Neural Information Processing Systems, 2011, 24. 1413-1421. [19] HUANG L, LU J, TAN Y P. Co-learned multi-view spectral clustering for face recognition based on image sets [J]. IEEE Signal Processing Letters, 2014, 21(7): 875-879. [20] LU C, YAN S, LIN Z. Convex sparse spectral clustering: single-view to multi-view [J]. IEEE Transactions on Image Processing, 2016, 25(6): 2833-2843. [21] CHEN C, QIAN H, CHEN W, et al. Auto-weighted multi-view constrained spectral clustering [J]. Neurocomputing, 2019, 366: 1-11. [22] XU H, ZHANG X, XIA W, et al. Low-rank tensor constrained co-regularized multi-view spectral clustering [J]. Neural Networks, 2020, 132: 245-252. [23] ZHUGE W, LUO T, TAO H, et al. Multi-view spectral clustering with incomplete graphs [J]. IEEE Access, 2020, 8: 99820-99831. [24] HAJJAR E, DORNAIKA F, ABDALLAH F. One-step multi-view spectral clustering with cluster label correlation graph [J]. Information Sciences, 2022, 592: 97-111. [25] HAJJAR E, DORNAIKA F, ABDALLAH F. Multi-view spectral clustering via constrained nonnegative embedding [J]. Information Fusion, 2022, 78: 209-217. [26] YANG W, WANG Y, TANG C, et al. One step multi-view spectral clustering via joint adaptive graph learning and matrix factorization [J]. Neurocomputing, 2023, 524: 95-105. [27] DING C, HE X, SIMON H D. On the equivalence of nonnegative matrix factorization and spectral clustering[C]//Proceedings of the 2005 SIAM International Conference on Data Mining. [S.l.] : Society for Industrial and Applied Mathematics, 2005: 606-610. [28] HU Z, NIE F, CHANG W, et al. Multi-view spectral clustering via sparse graph learning [J]. Neurocomputing, 2020, 384: 1-10. [29] HU Z, NIE F, WANG R, et al. Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding [J]. Information Fusion, 2020, 55: 251-259. [30] TANG C, LI Z, WANG J, et al. Unified one-step multi-view spectral clustering [J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(6): 6449-6460. |
[1] | Xie Guang-qiang, Wan Zi-kun, Li Yang. Consensus of Switched Topology in Multi-agent System Based on Layered Neighbor Selection [J]. Journal of Guangdong University of Technology, 2024, 41(04): 44-51.doi: 10.12052/gdutxb.230072 |
[2] | Chen Ying-se, Peng Shi-guo, Wang Yong-hua. Quasi-consensus of Multi-agent System under Dynamic Event-triggered Impulsive Mechanism [J]. Journal of Guangdong University of Technology, 2024, 41(04): 52-60.doi: 10.12052/gdutxb.230072 |
[3] | Hu Ran, Peng Shi-guo. Impulsive Observer-based Leader-following Consensus for Multi-agent Systems [J]. Journal of Guangdong University of Technology, 2023, 40(05): 88-93.doi: 10.12052/gdutxb.230072 |
[4] | Gu Zhi-hua, Peng Shi-guo, Huang Yu-jia, Feng Wan-dian, Zeng Zi-xian. Leader-following Consensus of Nonlinear Multi-agent Systems with ROUs and RONs via Event-triggered Impulsive Control [J]. Journal of Guangdong University of Technology, 2023, 40(01): 50-55.doi: 10.12052/gdutxb.230072 |
[5] | Xie Guang-qiang, Xu Hao-ran, Li Yang, Chen Guang-fu. Consensus Opinion Enhancement in Social Network with Multi-agent Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2022, 39(06): 36-43.doi: 10.12052/gdutxb.230072 |
[6] | Zeng Zi-xian, Peng Shi-guo, Huang Yu-jia, Gu Zhi-hua, Feng Wan-dian. Mean Square Quasi-consensus of Stochastic Multi-agent Systems Under Two Different Impulsive Deception Attacks [J]. Journal of Guangdong University of Technology, 2022, 39(01): 71-77.doi: 10.12052/gdutxb.230072 |
[7] | Cai Hao, Liu Bo. A Semi-supervised Two-view Multiple-Instance Clustering Model [J]. Journal of Guangdong University of Technology, 2021, 38(03): 22-28,47.doi: 10.12052/gdutxb.230072 |
[8] | Zhang Hong-ye, Peng Shi-guo. A Research on the Consensus Problem of Multi-agent Systems with Random Time Delays Based on Model Reduction [J]. Journal of Guangdong University of Technology, 2019, 36(02): 86-90,96.doi: 10.12052/gdutxb.230072 |
[9] | Zhang Wei, Mai Zhi-shen. A Research on Local Outlier Factor De-noising Method for Kernel Fuzzy Spectral Clustering [J]. Journal of Guangdong University of Technology, 2018, 35(06): 77-82.doi: 10.12052/gdutxb.230072 |
[10] | Zhang Zhen-hua, Peng Shi-guo. Leader-Following Consensus of Second-Order Multi-Agent Systems with Switching Topology [J]. Journal of Guangdong University of Technology, 2018, 35(02): 75-80.doi: 10.12052/gdutxb.230072 |
[11] | ZHU Jing-Li1, JIN Chao-Yong1, GUO Hong-Ping2. H∞ Consensus of Multiagent Network with a TimeVarying Reference State [J]. Journal of Guangdong University of Technology, 2011, 28(3): 83-86.doi: 10.12052/gdutxb.230072 |
|