广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (04): 1-8.doi: 10.12052/gdutxb.200023

• •    下一篇

基于低秩矩阵补全的单幅图像去雨算法

朱鉴, 刘培钰, 陈炳丰, 蔡瑞初   

  1. 广东工业大学 计算机学院,广东 广州 510006
  • 收稿日期:2020-02-08 出版日期:2020-07-11 发布日期:2020-07-11
  • 通信作者: 陈炳丰(1983-),男,讲师,博士,主要研究方向为数字图像处理,E-mail:chenbf@gdut.edu.cn E-mail:chenbf@gdut.edu.cn
  • 作者简介:朱鉴(1982-),男,副教授,博士,主要研究方向为计算机图形学、数字图像处理
  • 基金资助:
    国家自然科学基金资助项目(61502109,61702112,61672502);广东省自然科学基金资助项目(2016A030310342);广东省信息物理融合系统重点实验室开放课题(2016B030301008);广东省科技计划项目(2016A040403078,2017B010110015,2017B010110007);广州市珠江科技新星资助项目(201610010101);广州市科技计划项目(201604016075)

Single Image De-raining Based on Low-rank Matrix Completion

Zhu Jian, Liu Pei-yu, Chen Bing-feng, Cai Rui-chu   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-02-08 Online:2020-07-11 Published:2020-07-11

摘要: 提出一种基于低秩矩阵补全的单幅图像去雨算法, 该算法采用检测、修补、优化的三阶段策略。在检测雨阶段, 利用雨的亮度先验信息构建检测雨模型; 在修补阶段, 先采用相似块匹配算法构造相似块矩阵, 再利用其具有低秩属性的特点, 将去雨问题转化为低秩矩阵补全问题; 在优化阶段, 提出修正策略进一步提升去雨效果和客观度量值。在合成雨图和真实雨图上验证算法, 实验结果表明, 该算法表现出较好的去雨效果, 且对大雨图像的处理也较为满意, 相比其他方法在客观度量值和主观视觉上均有一定的优势。

关键词: 单幅图像去雨, 雨标记位图, 低秩矩阵, 相似块匹配

Abstract: A single image de-raining algorithm based on low rank matrix completion is proposed. The algorithm adopts the three-stage strategy of detection, repair and optimization. In the rain detection stage, the rain intensity information is used as a prior to build a detection model. In the repair stage, a similar patch matching algorithm is first used to construct a similar patch matrix, and then the problem of de-raining is transformed into the task of low-rank matrix completion based on its low-rank attribute. In the optimization stage, a correction strategy is adopted to further improve the de-raining effect and objective measurements. The algorithm is verified on synthetic rain images and real rain images. Experimental results show that the algorithm shows a good rain removal effect, and the processing of heavy rain images is also satisfactory. Compared with other methods, it has certain advantages in both objective metrics and subjective visual quality.

Key words: single image de-raining, rain marker bitmap, low-rank matrix, similar patch matching

中图分类号: 

  • TP391
[1] KIM J H, SIM J Y, KIM C S. Video deraining and desnowing using temporal correlation and low-rank matrix completion [J]. IEEE Transactions on Image Processing, 2015, 24(9): 2658-2670
[2] JIANG T X, HUANG T Z, ZHAO X L, et al. A novel tensor-based video rain streaks removal approach via utilizing discriminatively intrinsic priors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 4057-4066.
[3] LI M, XIE Q, ZHAO Q, et al. Video rain streak removal by multiscale convolutional sparse coding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6644-6653.
[4] CHEN J, TAN C H, HOU J, et al. Robust video content alignment and compensation for rain removal in a cnn framework[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6286-6295.
[5] XU J, ZHAO W, LIU P, et al. Removing rain and snow in a single image using guided filter[C]// Proceedings of the IEEE International Conference on Computer Science and Automation Engineering (CSAE). Zhangjiajie: IEEE, 2012, 2: 304-307.
[6] ZHENG X, LIAO Y, GUO W, et al. Single-image-based rain and snow removal using multi-guided filter[C]//Proceedings of the International Conference on Neural Information Processing. Berlin: Springer, 2013: 258-265.
[7] KANG L W, LIN C W, FU Y H. Automatic single-image-based rain streaks removal via image decomposition [J]. IEEE Transactions on Image Processing, 2011, 21(4): 1742-1755
[8] LI Y, TAN R T, GUO X, et al. Rain streak removal using layer priors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2736-2744.
[9] LUO Y, XU Y, JI H. Removing rain from a single image via discriminative sparse coding[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 3397-3405.
[10] ZHU L, FU C W, LISCHINSKI D, et al. Joint bi-layer optimization for single-image rain streak removal[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2526-2534.
[11] LIU R, JIANG Z, FAN X, et al. Knowledge-driven deep unrolling for robust image layer separation [J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1653-1666
[12] FU X, HUANG J, DING X, et al. Clearing the skies: A deep network architecture for single-image rain removal [J]. IEEE Transactions on Image Processing, 2017, 26(6): 2944-2956
[13] FU X, HUANG J, ZENG D, et al. Removing rain from single images via a deep detail network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 3855-3863.
[14] XIANG P, WANG L, WU F, et al. Single-image de-raining with feature-supervised generative adversarial network [J]. IEEE Signal Processing Letters, 2019, 26(5): 650-654
[15] YANG W, TAN R T, FENG J, et al. Joint rain detection and removal from a single image with contextualized deep networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019
[16] ZHANG H, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 695-704.
[17] 傅雪阳, 孙琦, 黄悦, 等. 基于深度邻近连接网络的单幅图像去雨方法[J]. 计算机科学, 2020, 47(2): 106-111
FU X Y, SUN Q, HUANG Y, et al. Method for single image de-raining based on deep adjacently connected networks [J]. Computer Science, 2020, 47(2): 106-111
[18] 史加荣, 郑秀云, 魏宗田等. 低秩矩阵恢复算法综述[J]. 计算机应用研究, 2013, 30(6): 1601-1605
SHI J R, ZHENG X Y, WEI Z T, et al. Survey on algorithms of low-rank matrix recovery [J]. Application Research of Computers, 2013, 30(6): 1601-1605
[19] LU C, LIN Z, YAN S. Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization [J]. IEEE Transactions on Image Processing, 2014, 24(2): 646-654
[20] MA S, GOLDFARB D, CHEN L. Fixed point and Bregman iterative methods for matrix rank minimization [J]. Mathematical Programming, 2011, 128(1-2): 321-353
[21] LU C, TANG J, YAN S, et al. Generalized nonconvex nonsmooth low-rank minimization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 4130-4137.
[22] DONG W, SHI G, LI X. Nonlocal image restoration with bilateral variance estimation: a low-rank approach [J]. IEEE Transactions on Image Processing, 2012, 22(2): 700-711
[23] JI H, LIU C, SHEN Z, et al. Robust video denoising using low rank matrix completion[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 1791-1798.
[24] WEN F, CHU L, LIU P, et al. A survey on nonconvex regularization-based sparse and low-rank recovery in signal processing, statistics, and machine learning [J]. IEEE Access, 2018, 6: 69883-69906
[25] WANG Y, HUANG T Z. A tensor-based low-rank model for single-image rain streaks Removal [J]. IEEE Access, 2019, 7: 83437-83448
[26] ABDEL-HAKIM A E. A novel approach for rain removal from videos using low-rank recovery[C]//20145th International Conference on Intelligent Systems, Modelling and Simulation. Langkawi: IEEE, 2014: 351-356.
[27] ZHANG H, PATEL V M. Convolutional sparse and low-rank coding-based rain streak removal[C]//2017 IEEE Winter Conference on Applications of Computer Vision (WACV). Santa Rosa: IEEE, 2017: 1259-1267.
[28] CANDES E J, PLAN Y. Matrix completion with noise [J]. Proceedings of the IEEE, 2010, 98(6): 925-936
[29] HORE A, ZIOU D. Image quality metrics: PSNR vs. SSIM[C]//201020th International Conference on Pattern Recognition. Istanbul: IEEE, 2010: 2366-2369.
[30] 李红蕾, 凌捷, 徐少强. 关于图象质量评价指标PSNR的注记[J]. 广东工业大学学报, 2004, 21(3): 74-78
LI H L, LING J, XU S Q. The exegesis of the quality assessment PSNR of images [J]. Journal of Guangdong University of Technology, 2004, 21(3): 74-78
[31] YANG W, TAN R T, FENG J, et al. Deep joint rain detection and removal from a single image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 1357-1366.
[1] 谢国波, 林立, 林志毅, 贺笛轩, 文刚. 基于YOLOv4-MP的绝缘子爆裂缺陷检测方法[J]. 广东工业大学学报, 2023, 40(02): 15-21.
[2] 陈靖宇, 吕毅. 基于脉冲神经网络的冷链制冷机结霜检测方法[J]. 广东工业大学学报, 2023, 40(01): 29-38.
[3] 叶文权, 李斯, 凌捷. 基于多级残差U-Net的稀疏SPECT图像重建[J]. 广东工业大学学报, 2023, 40(01): 61-67.
[4] 邹恒, 高军礼, 张树文, 宋海涛. 围棋机器人落子指引装置的设计与实现[J]. 广东工业大学学报, 2023, 40(01): 77-82,91.
[5] 谢光强, 许浩然, 李杨, 陈广福. 基于多智能体强化学习的社交网络舆情增强一致性方法[J]. 广东工业大学学报, 2022, 39(06): 36-43.
[6] 刘信宏, 苏成悦, 陈静, 徐胜, 罗文骏, 李艺洪, 刘拔. 高分辨率桥梁裂缝图像实时检测[J]. 广东工业大学学报, 2022, 39(06): 73-79.
[7] 熊武, 刘义. 粒子滤波算法在BDS高铁铁轨静态形变监测中的应用研究[J]. 广东工业大学学报, 2022, 39(04): 66-72.
[8] 易闽琦, 刘洪伟, 高鸿铭. 电商平台产品共同购买网络的影响因素研究[J]. 广东工业大学学报, 2022, 39(03): 16-24.
[9] 丘展春, 费伦科, 滕少华, 张巍. 余弦相似度保持的掌纹识别算法[J]. 广东工业大学学报, 2022, 39(03): 55-62.
[10] 郑佳碧, 杨振国, 刘文印. 基于细粒度混杂平衡的营销效果评估方法[J]. 广东工业大学学报, 2022, 39(02): 55-61.
[11] Gary Yen, 栗波, 谢胜利. 地球流体动力学模型恢复的长短期记忆网络渐进优化方法[J]. 广东工业大学学报, 2021, 38(06): 1-8.
[12] 李光程, 赵庆林, 谢侃. 去中心化的数据处理方案设计[J]. 广东工业大学学报, 2021, 38(06): 77-83.
[13] 谢光强, 赵俊伟, 李杨, 许浩然. 基于多集群系统的车辆协同换道控制[J]. 广东工业大学学报, 2021, 38(05): 1-9.
[14] 张巍, 张圳彬. 联合图嵌入与特征加权的无监督特征选择[J]. 广东工业大学学报, 2021, 38(05): 16-23.
[15] 邓杰航, 袁仲鸣, 林好润, 顾国生. 协同超像素和视觉显著性的图像质量评价[J]. 广东工业大学学报, 2021, 38(05): 33-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!