Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (03): 116-124.doi: 10.12052/gdutxb.210150

Previous Articles     Next Articles

A Research on Gas Flow Characteristics and Structure Optimization in Primary Air Chamber of Circulating Fluidized Bed Boiler

Liu Xiao-zhou, Zhu Guang-yu   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-10-14 Online:2022-05-10 Published:2022-05-19

Abstract: Primary air chamber is one of the key components of circulating fluidized bed boiler, and the uniformity of primary air flow distribution is very important for the efficient operation of circulating fluidized bed boiler. The uneven distribution of primary air flow will have an adverse impact on boiler combustion, resulting in the reduction of boiler thermal efficiency. In order to improve the operation efficiency of circulating fluidized bed boiler, a numerical simulation method is used to study and design the appropriate air modification. Numerical simulation results show that after installing the deflector in the primary air chamber, the velocity nonuniformity at the cross section of the primary air chamber decreases from 81% to 24%. In order to verify the numerical simulation results, a small-scale geometric model of a 220 t/h circulating fluidized bed boiler is used to carry out visualization and velocity distribution uniformity experiments under five different experimental conditions. The experimental results confirm the correctness of the numerical simulation. In addition, the hot test is carried out on a 220 t/h circulating fluidized bed boiler. The results of hot test show that the thermal efficiency of the boiler increases from 85.71% to 88.34% after installing the deflector in the primary air chamber, which is equivalent to saving 5000 tons of standard coal every year. The economic benefit is remarkable, which proves the effectiveness of the deflector.

Key words: numerical simulation, primary air chamber, air flow modifier, perforated plate, cold test, hot test

CLC Number: 

  • TK16
[1] 杨申莉, 张世红, 刘德昌, 等. 40t/h 循环流化床锅炉燃烧工况差的原因分析与改造[J]. 电站系统工程, 2002, 18(3): 13-15.
YANG S L, ZHANG S H, LIU D C, et al. Analysis and improving measures of 40 t/h CFB boiler combustion efficiency [J]. Power System Engineering, 2002, 18(3): 13-15.
[2] 赵志强. 循环流化床锅炉运行参数控制措施[J]. 化工设计通讯, 2017, 43(8): 127-127.
ZHAO Z Q. Control measures for operating parameters of circulating fluidized bed boilers [J]. Chemical Engineering Design Communications, 2017, 43(8): 127-127.
[3] 李斌. 中小型循环流化床锅炉二次风的布置[J]. 工业锅炉, 2009, 4: 14-16.
LI B. The arrangement of secondary air in small and middle sized CFB boiler [J]. Industrial Boilers, 2009, 4: 14-16.
[4] CAI R, ZHANG Y. Force characteristic of a large dense object in a fluidized bed equipped with an inclined air distributor [J]. Advanced Powder Technology, 2016, 27(2): 599-609.
[5] WORMSBECKER M, PUGSLEY T S, TANFARA H. The influence of distributor design on fluidized bed dryer hydrodynamics[C]//BERRUTI F, BI X T, PUGSLEY T S. Proceedings of the 12th International Conference on Fluidization-New Horizons in Fluidization Engineering. Vancouver: Engineering Conferences International, 2007: 815-822.
[6] LUO L, WEI M, FAN Y, et al. Heuristic shape optimization of baffled fluid distributor for uniform flow distribution [J]. Chemical Engineering Science, 2015, 123: 542-556.
[7] WEI M, FAN Y, LUO L, et al. CFD-based evolutionary algorithm for the realization of target fluid flow distribution among parallel channels [J]. Chemical Engineering Research and Design, 2015, 100: 341-352.
[8] 杨琛刚. 自主型1178t/h循环流化床锅炉一次风结构选型设计[D]. 上海: 上海交通大学, 2014.
[9] 焦小波, 徐林云, 张光璐. 循环流化床锅炉布风系统的优化设计改造[J]. 科技创新与应用, 2016, 25: 160-160.
JIAO X B, XU L Y, ZHANG G L. Optimal design and transformation of air distribution system of circulating fluidized bed boiler [J]. Technology Innovation and Application, 2016, 25: 160-160.
[10] 侯万林. 循环流化床锅炉防磨技术的探讨[J]. 能源科技, 2021, 19(3): 64-67.
HOU W L. Discussion on Anti-wear Technology of Circulating Fluidized Bed Boiler [J]. Energy Science and Technology, 2021, 19(3): 64-67.
[11] 尤灏. 垃圾焚烧余热锅炉导流板结构参数化建模及优化设计[J]. 环境卫生工程, 2021, 29(2): 50-55,62.
YOU H. Parametric modeling and optimization design of guide plate structure in exhaust-heat boiler of waste incineration [J]. Environmental Sanitation Engineering, 2021, 29(2): 50-55,62.
[12] 韦振祖, 赵宁波, 李明磊, 等. 非均匀入口条件下SCR脱硝系统流场优化改造技术研究[J]. 锅炉技术, 2021, 52(4): 74-80.
WEI Z Z, ZHAO N B, LI M L, et al. Study on the flow field optimization of SCR denitration system based on non-uniform inlet parameters [J]. Boiler Technology, 2021, 52(4): 74-80.
[13] 张春晋. 管道列车在平直管段运移时的水力特性研究[D]. 太原: 太原理工大学, 2019.
[14] ZHU Z, NIU J, LI Y. Swirling-strength based large eddy simulation of turbulent flow around single square cylinder at low Reynolds numbers [J]. Applied Mathematics and Mechanics, 2014, 35(8): 959-978.
[15] ZHU J, OUYANG Z, LU Q. Numerical simulation on pulverized coal combustion and NO x emissions in high temperature air from circulating fluidized bed [J]. Journal of Thermal Science, 2013, 22(3): 261-268.
[16] 吕清刚, 宋国良, 孙运凯, 等. 690t/h 循环流化床锅炉设计特点与运行特性分析[J]. 动力工程学报, 2010, 12: 899-903.
LYU Q G, SONG G L, SUN Y K, et al. Analysis on design features and operation characteristics of a 690 t/h circulating fluidized bed boiler [J]. Journal of Chinese Society of Power Engineering, 2010, 12: 899-903.
[17] 谷海涛. 循环流化床锅炉运行调节分析[J]. 能源与节能, 2018, 3: 68-69.
GU H T. Operation regulation analysis of circulating fluidized bed boiler [J]. Energy and Conservation, 2018, 3: 68-69.
[18] 孟向军. 循环流化床锅炉出口区域颗粒浓度分布和运动特性的研究[D]. 天津: 天津大学, 2003.
[19] 刘昀, 刘德昌, 陈汉平, 等. 提高循环流化床锅炉热效率的措施[J]. 电力设备, 2008, 9(4): 1-6.
LIU Y, LIU D C, CHEN H P, et al. Measures for improving the thermal efficiency of circulating fluidized bed boiler [J]. Electrical Equipment, 2008, 9(4): 1-6.
[20] 王凤阳, 华海峰, 任海, 等. 75 t/h循环流化床锅炉燃烧优化调整的实验研究[J]. 工业锅炉, 2020, 5: 41-45.
WANG F Y, HUA H F, REN H, et al. Experimental study on combustion optimization adjustment of 75 t/h CFB boilers [J]. Industrial Boilers, 2020, 5: 41-45.
[21] 李鹏. 生物质混燃对350 MW超临界CFB烟气污染物排放影响[J]. 山东电力技术, 2018, 45(4): 66-68.
LI P. Effect of biomass mixed combustion on 350 MW supercritical CFB exhaust emission [J]. Shandong Electric Power, 2018, 45(4): 66-68.
[22] 李立. 循环流化床锅炉水(汽)冷式分离器的设计研究[D]. 上海: 上海交通大学, 2013.
[1] Liu Xiao-zhou, Zhu Rui, Zhu Guang-yu. Numerical Simulation and Experimental Research of Methane-hydrogen Combustion Technology on Swirl Gas Stove [J]. Journal of Guangdong University of Technology, 2023, 40(01): 113-121.
[2] Dai Mei-ling, Cheng Cheng, Wu Zhi-wen, Lu Zhen-wei, Lu Jie-xun, Yang Jian, Yang Fu-jun. Quasi-static Compressive Mechanical Behaviors of Perforated Hollow-Sphere Structures [J]. Journal of Guangdong University of Technology, 2022, 39(04): 83-90,97.
[3] Li Yu-hang, Gao Zhen-yu, Yang Xue-qiang, Liu Pan. Test and Numerical Analysis of Penetration Resistance of Static Pressure Steel Sheet Pile [J]. Journal of Guangdong University of Technology, 2022, 39(01): 129-134.
[4] Luo Jun-wu, Li Dong-mei, Liang Shuai, Wang Shuai-chao, Xiao Shu-hong. A Research on Numerical Simulation of Droplet Generation in Crossing Microchannels [J]. Journal of Guangdong University of Technology, 2020, 37(05): 68-74.
[5] Gan Yang-yang, Li Zhi-sheng. A Numerical Simulation and an Analysis of Air Curtain Control Effect on PM2.5 in the Kitchen [J]. Journal of Guangdong University of Technology, 2020, 37(03): 82-87.
[6] Liu Chen-lin, Zheng San-qiang, Han Xiao-zhuo. A Spatio-temporal Dynamic Analysis of a Predation-competition System with Allee Effect [J]. Journal of Guangdong University of Technology, 2019, 36(06): 38-44.
[7] Wu Cheng-he, Liu Li-ru, Chen Yi-gang, Wang Zhang-yuan. A Performance Study of Solar Chimney with Rotating Collector [J]. Journal of Guangdong University of Technology, 2018, 35(05): 70-74.
[8] Li Zhi-sheng, Liu Xu-hong, Zheng Jie-dong, Liu Li-ru, Wang Xiao-xia. Thermal Environment Simulation and Airflow Distribution Analysis of Passenger Boarding Bridge [J]. Journal of Guangdong University of Technology, 2018, 35(02): 28-34.
[9] ZHAO Bing-Chun, WANG Xin, LAI Zhi-Ping. Effects of Building Layout Forms on Thermal environment in Residential Districts [J]. Journal of Guangdong University of Technology, 2016, 33(06): 91-95.
[10] WANG Chang-Hong, HUANG Jiong-Tong, ZENG Wen-Qiang. Numerical Simulation and Analysis of Heat Transfer Characteristics in Electrode of Spot Welding for High Melting Steel [J]. Journal of Guangdong University of Technology, 2016, 33(03): 6-10.
[11] LIU Yong-Jian, LIU Yi-Mei, CHEN Chuang-Xin, WANG Ying, LUO Qi-Yang, LIN Hui. Research on Deformation Characteristics of Protective Structure of Deep Foundation Pit in Soft Soil [J]. Journal of Guangdong University of Technology, 2016, 33(01): 89-94.
[12] YANG Yi. Finite Volume Method Model for Unsteadystate Heat and Mass Transfer in Seawater Solar Pond [J]. Journal of Guangdong University of Technology, 2015, 32(2): 120-125.
[13] Lai Zhiping, Wang Xin. Numerical Simulation of Wind Pressure Distribution on Building Surfaces at a Convention Centre [J]. Journal of Guangdong University of Technology, 2014, 31(2): 78-84.
[14] YANG Chun-Shan, HE Na, ZHANG Ya-Ning-. Numerical Analysis of Seepage stress Coupling of  Deep Foundation Pit Excavation [J]. Journal of Guangdong University of Technology, 2013, 30(4): 43-48.
[15] Gong Chen,Wang Xin. Research on the Characteristics of Local Atmospheric Flow in Urban Residential Areas [J]. Journal of Guangdong University of Technology, 2012, 29(3): 103-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!