Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (06): 125-132.doi: 10.12052/gdutxb.230205
• Information and Communication Engineering • Previous Articles
Xie Wei-li, Zhang Jun
CLC Number:
[1] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. [2] NERCESSIAN S C, PANETTA K A, AGAIAN S S. Non-linear direct multi-scale image enhancement based on the luminance and contrast masking characteristics of the human visual system [J]. IEEE Transactions on Image Processing, 2013, 22(9): 3549-3561. [3] PAPYAN V, ROMANO Y, ELAD M. Convolutional neural networks analyzed via convolutional sparse coding [J]. The Journal of Machine Learning Research, 2017, 18(1): 2887-2938. [4] SULAM J, ABERDAM A, BECK A, et al. On multi-layer basis pursuit, efficient algorithms and convolutional neural networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(8): 1968-1980. [5] PAPYAN V, SULAM J, ELAD M. Working locally thinking globally: theoretical guarantees for convolutional sparse coding [J]. IEEE Transactions on Signal Processing, 2017, 65(21): 5687-5701. [6] CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit [J]. SIAM Review, 2001, 43(1): 129-159. [7] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. [8] DAUBECHIES I, DEFRISE M, DE MOL C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J]. Communications on Pure and Applied Mathematics:A Journal Issued by the Courant Institute of Mathematical Sciences, 2004, 57(11): 1413-1457. [9] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. [10] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers [J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1-122. [11] SIMON D, ELAD M. Rethinking the CSC model for natural images[J]. Advances in Neural Information Processing Systems, 2019(204): 2274-2284. [12] GUO P, ZENG D, TIAN Y, et al. Multi-scale enhancement fusion for underwater sea cucumber images based on human visual system modelling [J]. Computers and Electronics in Agriculture, 2020, 175: 105608. [13] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90. [14] OLIMOV B, SUBRAMANIAN B, UGLI R A A, et al. Consecutive multiscale feature learning-based image classification model [J]. Scientific Reports, 2023, 13(1): 3595. [15] NATARAJAN B K. Sparse approximate solutions to linear systems [J]. SIAM Journal on Computing, 1995, 24(2): 227-234. [16] CANDÈS E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. [17] TIBSHIRANI R. Regression shrinkage and selection via the lasso [J]. Journal of the Royal Statistical Society Series B:Statistical Methodology, 1996, 58(1): 267-288. [18] DONOHO D L, ELAD M. Optimally sparse representation in general (nonorthogonal) dictionaries via ?1 minimization [J]. Proceedings of the National Academy of Sciences, 2003, 100(5): 2197-2202. [19] RUBINSTEIN R, ZIBULEVSKY M, ELAD M. Double sparsity: learning sparse dictionaries for sparse signal approximation [J]. IEEE Transactions on Signal Processing, 2009, 58(3): 1553-1564. [20] TROPP J A. Greed is good: algorithmic results for sparse approximation [J]. IEEE Transactions on Information theory, 2004, 50(10): 2231-2242. [21] GROHS P. Mathematical aspects of deep learning[M]. Cambridge England: Cambridge University Press, 2022: 1-111. [22] LI M, ZHAI P, TONG S, et al. Revisiting sparse convolutional model for visual recognition [J]. Advances in Neural Information Processing Systems, 2022, 35: 10492-10504. [23] ZHANG Z, ZHANG S. Towards understanding residual and dilated dense neural networks via convolutional sparse coding [J]. National Science Review, 2021, 8(3): nwaa159. [24] HUANG G. Multi-scale dense networks for resource efficient image Classification[EB/OL]. arXiv: 1703.09844(2017-03-29) [2023-12-15].https://doi.org/10.48550/arXiv.1703.09844. [25] KRIZHEVSKY A. Learning multiple layers of features from tiny images[EB/OL]. (2023-12-18) [2009-04-08].https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf. [26] CHRABASZCZ, P. A downsampled variant of ImageNet as an alternative to the CIFAR datasets[EB/OL]. arXiv: 1707.08819 (2017-08-23) [2023-12-15].https://ar5iv.org/abs/1707.08819. [27] NETZER Y. Reading digits in natural images with unsupervised feature learning[EB/OL]. (2023-12-18) [2011-12-08].https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/37648.pdf. |
[1] | Tu Ze-liang, Cheng Liang-lun, Huang Guo-Heng. Local Orthogonal Feature Fusion for Few-Shot Image Classification [J]. Journal of Guangdong University of Technology, 2024, 41(02): 73-83.doi: 10.12052/gdutxb.230205 |
[2] | Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21.doi: 10.12052/gdutxb.230205 |
[3] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8.doi: 10.12052/gdutxb.230205 |
[4] | Huang Jian-hang, Wang Zhen-you. A Research on Deep Learning Object Detection Algorithm Based on Feature Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(04): 52-58.doi: 10.12052/gdutxb.230205 |
[5] | Ma Shao-peng, Liang Lu, Teng Shao-hua. A Lightweight Hyperspectral Remote Sensing Image Classification Method [J]. Journal of Guangdong University of Technology, 2021, 38(03): 29-35.doi: 10.12052/gdutxb.230205 |
[6] | Xia Hao, Cai Nian, Wang Ping, Wang Han. Magnetic Resonance Image Super-Resolution via Multi-Resolution Learning [J]. Journal of Guangdong University of Technology, 2020, 37(06): 26-31.doi: 10.12052/gdutxb.230205 |
[7] | Zhan Yin-wei, Zhu Bai-wan, Yang Zhuo. Research and Application of Vehicle Color and Model Recognition Algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(04): 9-14.doi: 10.12052/gdutxb.230205 |
[8] | Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17.doi: 10.12052/gdutxb.230205 |
[9] | Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37.doi: 10.12052/gdutxb.230205 |
[10] | Chen Xu, Zhang Jun, Chen Wen-wei, Li Shuo-hao. Convolutional Neural Network Algorithm and Case [J]. Journal of Guangdong University of Technology, 2017, 34(06): 20-26.doi: 10.12052/gdutxb.230205 |
[11] | SHEN Xiao-Min, LI Bao-Jun, SUN Xu, XU Wei-Chao. Large Scale Face Clustering Based on Convolutional Neural Network [J]. Journal of Guangdong University of Technology, 2016, 33(06): 77-84.doi: 10.12052/gdutxb.230205 |
[12] | DING Wei,CHENG Si-yuan,ZHANG Xiang-wei . Snake Model Based on MR-MS and Its Application [J]. Journal of Guangdong University of Technology, 2005, 22(1): 37-41.doi: 10.12052/gdutxb.230205 |
|