Journal of Guangdong University of Technology ›› 2012, Vol. 29 ›› Issue (3): 12-17.doi: 10.3969/j.issn.1007-7162.2012.03.002

• Feature Articles • Previous Articles     Next Articles

A Review on Correlation Coefficients

Xu Wei-chao   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2012-06-03 Online:2012-09-20 Published:2012-09-20

Abstract: As statistics characterizing the strength of statistical relationship between two random variables,correlation coefficients have found wide applications in nearly all science and technology  fields.This  paper attempts to provide a detailed review on 5 commonly used correlation coeffcients in the literature, including a relatively detailed discussion on their statistical properties under the fundamental bivariate normal model and their suitable application scenarios. Specifically,(1) if the sample follows normal distribution, then the  Pearsons Product Moment Correlation Coefficient is optimal;(2) if the monotone nonlinear distortion in the sample is small, then the Order Statistics Correlation Coefficient should be used;(3) if the monotone nonlinear distortion in the sample is severe, then the Spearmans rho or Kendalls tau are feasible;(4) if only one channel is distorted by monotone nonlinearity, then the Gini Correlation is best choice; and (5) if there exsits impulsive noise in the sample, then  the Spearmans rho or Kendalls tau should be employed.

Key words: Pearson‘s Product Moment Correlation Coefficient (PPMCC); Spearman’s Rho (SR); Kendall‘s Tau (KT);Order Statistics Correlation Coefficient (OSCC); Gini Correlation (GC); Bivariate No

[1] Gibbons J D, Chakraborti S. Nonparametric Statistical Inference[M]. 3rd. New York: M Dekker, 1992.

[2] Fisher R A. Statistical Methods, Experimental Design,and Scientific Inference[M]. New York: Oxford UniversityPress, 1990.

[3] Fisher R A. On the ‘probable error’ of a coefficient of correlation deduced from a small sample[J]. Metron, 1921,1:332.

[4] Fieller E C, Hartley H O, Pearson E S. Tests for rank correlation coefficients[J]. Biometrika, 1957,44(3/4):470481.

[5] Kendall M, Gibbons J D. Rank Correlation Methods[M].5th. New York: Oxford University Press, 1990.

[6] Fisher R. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population[J]. Biometrika, 1915, 10(4):507521.

[7] Tumanski S. Principles of Electrical Measurement[M].New York: Taylor & Francis, 2006.

[8] Stein D. Detection of random signals in Gaussian mixture noise[J]. IEEE Trans Inf Theory, 1995,41(6):17881801.

[9] Chen R, Wang X, Liu J. Adaptive joint detection and decoding in flatfading channels via mixture Kalman filtering[J]. IEEE Trans Inf Theory, 2000, 46(6):20792094.

[10] 〖ZK(#〗Reznic Z, Zamir R, Feder M. Joint sourcechannel coding of a Gaussian mixture source over the Gaussian broadcast channel[J]. IEEE Trans Inf Theory, 2002,48(3):776781.

[11] Shevlyakov G L, Vilchevski N O. Robustness in Data Analysis: criteria and methods[M]. Modern probability and statistics. Utrecht: VSP, 2002.

[12] Schechtman E, Yitzhaki S. A measure of association base on Ginis mean difference[J]. Commun  StatistTheor Meth, 1987,16(1):207231.

[13] Xu W, Chang C, Hung Y S, et al. Order Statistics Correlation Coefficient as a Novel Association Measurement With Applications to Biosignal Analysis[J]. IEEE Trans Signal Process, 2007, 55(12):55525563.

[14] Xu W, Chang C, Hung Y S, et al. Asymptotic Properties of Order Statistics Correlation Coefficient in the Normal Cases[J]. IEEE Trans Signal Process, 2008,56(6):22392248.

[15] Xu W, Hung Y S, Niranjan M, et al. Asymptotic Mean and Variance of Gini Correlation for Bivariate Normal Samples[J]. IEEE Trans Signal Process, 2010,58(2):522534.

[16] Mari D D, Kotz S. Correlation and Dependence[M]. London:Imperial College Press, 2001.

[17] Hoeffding W. A Class of Statistics with Asymptotically Normal Distribution[J]. Ann Math Stat, 1948,19(3):293325.

[18] Daniels H E. The Relation Between Measures of Correlation in the Universe of Sample Permutations[J].Biometrika,1944, 33(2):129135.

[19] Hotelling H. New light on the correlation coefficient and its transforms[J]. Journal of the Royal Statistical Society, Series B(Methodological), 1953, 15(2):193232.

[20] Moran P A P. Rank Correlation and ProductMoment Correlation[J]. Biometrika, 1948, 35(1/2):203206.

[21] Esscher F. On a method of determining correlation from the ranks of the variates[J]. Skand  Aktuar, 1924,7:201219.

[22] David F N, Mallows C L. The variance of Spearmans rho in normal samples[J]. Biometrika, 1961, 48(1/2):1928.

[23] Stuart A, Ord J K. Kendalls Advanced Theory of Statistics: Volume 2 Classical Inference and Relationship[M].5th. London: Edward Arnold, 1991.

[24] Xu W, Hou Y, Hung Y, et al. Comparison of Spearmans rho and Kendalls tau in Normal and Contaminated Normal Models[DB/OL]. (2010-12-31). http://arxiv.org/abs/1011.2009/.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!