Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (05): 80-87.doi: 10.12052/gdutxb.230198

• Mechanical Engineering • Previous Articles     Next Articles

An Analysis of Main Stiffness Coefficient and Transverse Shear Stress of Wind Turbine Blade Section

Wang Ya-di, Xia Hong-jian, Li De-yuan   

  1. School of Electromechanical Engineering, Guangdong University of Techonlogy, Guangzhou 510006, China
  • Received:2023-12-06 Online:2024-09-25 Published:2024-09-27

Abstract: This paper studies the calculation of bending and torsional stiffness of wind turbine composite blades, as well as the numerical calculation method of shear stress on the hollow thin-walled section when the blade is subjected to transverse shear force. Modern wind turbine blades are slender and twisted, with thin-walled airfoil sections and complex internal topological configurations, and the materials are anisotropic. When applying various beam models for mechanical analysis such as blade aeroelastic calculation and strength check, the stiffness coefficient of the blade section and the calculation results of the section shear stress distribution are required parameters. Based on the composite thin-walled structure lamination theory and weighted average method, combined with the Bredt-Batho shear theory, a numerical analysis algorithm for the equivalent elastic constant and section stiffness coefficient of the composite laminate was established, taking into account the shear web effect of the composite blade. and warping effects; based on the plate and shell theory of elastic mechanics and considering the influence of transverse shear and section warpage on section deformation, a numerical calculation method for shear flow caused by transverse shear was established; a Matlab program for related algorithms was developed. By analyzing the main stiffness coefficient and shear flow distribution of a 10 MW wind turbine blade and comparing the literature results, the correctness of the model and the effectiveness of the algorithm are verified.

Key words: wind turbine blade, composite, equivalent elastic constant, classical lamination theory (CLT), shear flow

CLC Number: 

  • TK83
[1] 刘人怀, 薛江红. 复合材料层合板壳非线性力学的研究进展[J]. 力学学报, 2017, 49(3): 487-506.
LIU R H, XUE J H. Development of nonlinear mechanics for laminated composite plates and shells [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 487-506.
[2] 曲晓奇. 考虑非线性几何刚度大型浮式风力机叶片动力响应分析[D]. 天津: 天津大学, 2021.
[3] LIN W, XIONG W L, LIANG G G, et al. Mathematical model for calculating cross-sectional properties of modern wind turbine composite blades [J]. Renewable Energy, 2014, 64: 52-60.
[4] LIN W, XIONG W L, ATHANASIOS K. State of the art in the aeroelasticity of wind turbine blades: aeroelastic modelling [J]. Renewable and Sustainable Energy Reviews, 2016, 64: 195-210.
[5] BLASQUES J P. User’s manual for BECAS[R]. Denmark: Technical University of Denmark, 2012. https://www.osti.gov/etdeweb/servlets/purl/1040602.
[6] REDDY J N. Mechanics of laminated composite plates and shells: theory and analysis[R]. Boca Raton: CRC, 2003.
[7] 郝际平, 钟炜辉. 薄壁杆件的弯曲与扭转[M]. 北京: 高等教育出版社, 2006.
[8] 牛牧华, 陈程, 李倩. 复合材料叶片截面刚度对风力机叶片气弹响应的敏感性研究[J]. 太阳能学报, 2023, 44(6): 461-468.
NIU M H, CHEN C, LI Q. Study on the sensitivity of composite blade cross-section stiffness to the aeroelastic response of wind turbine blades [J]. Journal of Solar Energy, 2023, 44(6): 461-468.
[9] CHRISTIAN B, FREDERIK Z, ROBERT B, et al. Description of the DTU 10 MW reference wind turbine [R]. Denmark: DTU Wind Energy Report-I-0092, 2013.
[10] 张达, 冯荣欣. 复合材料层压板双轴载荷下力学行为研究[C]//中国航空学会. 第六届中国航空科学技术大会论文集. 北京: 北京航空航天大学出版社, 2023: 5.
[11] AZIZUL I, ABDUL H, TERRY B, et al. An efficient model for laminated composite thin-walled beams of open or closed cross-section and with or without in filled materials [J]. Composite Structures, 2021, 256(112998): 1-16.
[12] PILKEY W D. Analysis and design of elastic beams[M]. United States: Wiley Online Library, 2002.
[13] 卢秉喜. 风力发电机复合材料叶片结构动力学特性研究[D]. 兰州: 兰州理工大学, 2023.
[14] SHAMA M. Torsion and shear stresses in ships[M]. Alexandria: Springer, 2010.
[15] 董新洪, 孙鹏文, 张兰挺, 等. 风力机叶片铺层参数多目标优化设计[J]. 机械工程学报, 2022, 58(4): 165-173.
DONG X H, SUN P W, ZHANG L T, et al. Multi objective optimization design of wind turbine blade layer parameters [J]. Journal of Mechanical Engineering, 2022, 58(4): 165-173.
[1] Yan Zhong-hua, Chen Xing-yu, Liu Wen-jie. Preparation of Au-Ag Composite Micro and Nanostructures and High Sensitivity Surface Enhanced Raman Scattering Detection [J]. Journal of Guangdong University of Technology, 2024, 41(03): 48-53.doi: 10.12052/gdutxb.230198
[2] Zhai Ke-yi, Ye Ming, Zhang Yao-wen, Jiang Hai-bo, Xiao Jie, Mei Gong-yong, Huang Zi-kang. An Experimental Research on Bonding Performance of ECC and Rebar [J]. Journal of Guangdong University of Technology, 2022, 39(02): 120-124.doi: 10.12052/gdutxb.230198
[3] Hao Yan-ping, Luo Tong, Lyu Gao-jin, Wang Chao, Zhou Hao, Yang Gui-hua, Chen Jia-chuan. Research Progress of Lignin-derived Biodegradable Composite Film Materials [J]. Journal of Guangdong University of Technology, 2022, 39(01): 21-33.doi: 10.12052/gdutxb.230198
[4] Xiao Xiao-lan, Yan Qiu-sheng, Lin Hua-tai, Jiao Jing-hao, Liu Jie. Research Progress of Silicon Nitride Ceramic Ball Grinding and Polishing Technology [J]. Journal of Guangdong University of Technology, 2018, 35(06): 18-23,30.doi: 10.12052/gdutxb.230198
[5] HUANG Jian-Zhi, CHENG Xiao-Ling. Preparation of Nanosheet Al(OH)3/Mg(OH)Composite Retardant Coated with Oleic Acid [J]. Journal of Guangdong University of Technology, 2016, 33(02): 71-75.doi: 10.12052/gdutxb.230198
[6] LIU Yu-Fei, LIU Yun-Hong, ZHOU Yan-Zhou. Optical Measurement of the Outofplane Displacement Fields of Glass Fiber with Reinforced Composite Material Surface [J]. Journal of Guangdong University of Technology, 2015, 32(2): 109-113.doi: 10.12052/gdutxb.230198
[7] He Kai-long, Chen Ying, Mo Song-ping, Feng Jing. Effects of Technological Parameters on Ni-P-PTFE Composite Copper Coating [J]. Journal of Guangdong University of Technology, 2013, 30(1): 101-105.doi: 10.12052/gdutxb.230198
[8] Zhang Hai-bing1,Tian Tian2,Wen Xu3. A Study of Electric Fields Around Composite Insulators under -Polluted and Wet Conditions [J]. Journal of Guangdong University of Technology, 2012, 29(2): 58-62.doi: 10.12052/gdutxb.230198
[9] Chen Chang-wen1; Liu Yong-jian1; Wang wei-cheng2. The Application of Composite Soil Nailing Walls in a Deep Foundation Pit [J]. Journal of Guangdong University of Technology, 2009, 26(2): 3-.doi: 10.12052/gdutxb.230198
[10] He Chun-bao1; Zhu Li-chun1; Li Xiao-yi1; Chen Jin-kun1; Kuang Jun-bin1; Huang Ju-qing2 . Design of and Experimental Research on Rigid Pile Composite Foundations [J]. Journal of Guangdong University of Technology, 2009, 26(1): 3-.doi: 10.12052/gdutxb.230198
[11] Hu Jun-feng1,Zhang Rong-hui1,Luo Shao-ming2 . The Numerical Analysis of Composite Pavement under Moving Load [J]. Journal of Guangdong University of Technology, 2008, 25(1): 81-85.doi: 10.12052/gdutxb.230198
[12] HUANG Jin,ZHANG Ren-yuan,LI Chang-ming. Infiltration Kinetics Analysis of Molten Salt Infiltrating Porous Ceramic [J]. Journal of Guangdong University of Technology, 2005, 22(2): 1-5.doi: 10.12052/gdutxb.230198
[13] LI Lin-sheng, CHEN Xian-chao, LI Wo-guang, YU Ye-qiu. A New Method of Directional Solidification of In-situ Cu-Cr Alloy [J]. Journal of Guangdong University of Technology, 2005, 22(2): 12-15.doi: 10.12052/gdutxb.230198
[14] BAO Peng~(1,2),ZHANG Hui~1,JIANG Xin-liang~2 . Study on the Bearing Mechanism of Rigid Pile Composite Ground with Discrete Element Method [J]. Journal of Guangdong University of Technology, 2005, 22(1): 105-109.doi: 10.12052/gdutxb.230198
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!